calyx_opt/passes_experimental/sync/
compile_sync.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
use crate::traversal::{Action, Named, VisResult, Visitor};
use calyx_ir::RRC;
use calyx_ir::{self as ir, GetAttributes};
use calyx_ir::{build_assignments, guard, structure};
use calyx_utils::{CalyxResult, Error};
use linked_hash_map::LinkedHashMap;
use std::collections::{HashMap, HashSet};
use std::rc::Rc;

#[derive(Default)]
/// 1. loop through all control statements under "par" block to find # barriers
///    needed and # members of each barrier
/// 2. add all cells and groups needed
/// 3. loop through all control statements, find the statements with @sync
///    attribute and replace them with
///     seq {
///       <stmt>;
///       incr_barrier_0_*;
///       write_barrier_0_*;
///       wait_*;
///       restore_*;
///     }
///    or
///     seq {
///       <stmt>;
///       incr_barrier_*_*;
///       write_barrier_*_*;
///       wait_*;
///       wait_restore_*;
///     }
pub struct CompileSync {
    barriers: BarrierMap,
}

/// the structure used to store cells and groups shared by one barrier
type BarrierMap = LinkedHashMap<u64, ([RRC<ir::Cell>; 2], [RRC<ir::Group>; 3])>;

impl Named for CompileSync {
    fn name() -> &'static str {
        "compile-sync"
    }

    fn description() -> &'static str {
        "Implement barriers for statements marked with @sync attribute"
    }
}

/// put into the count set the barrier indices appearing in the thread
fn count_barriers(
    s: &ir::Control,
    count: &mut HashSet<u64>,
) -> CalyxResult<()> {
    match s {
        ir::Control::Empty(_) => {
            if let Some(n) = s.get_attributes().get(ir::NumAttr::Sync) {
                count.insert(n);
            }
            Ok(())
        }
        ir::Control::Seq(seq) => {
            for stmt in seq.stmts.iter() {
                count_barriers(stmt, count)?;
            }
            Ok(())
        }
        ir::Control::While(ir::While { body, .. })
        | ir::Control::Repeat(ir::Repeat { body, .. }) => {
            count_barriers(body, count)?;
            Ok(())
        }
        ir::Control::If(i) => {
            count_barriers(&i.tbranch, count)?;
            count_barriers(&i.fbranch, count)?;
            Ok(())
        }
        ir::Control::Enable(e) => {
            if s.get_attributes().get(ir::NumAttr::Sync).is_some() {
                return Err(Error::malformed_control(
                    "Enable or Invoke controls cannot be marked with @sync"
                        .to_string(),
                )
                .with_pos(&e.attributes));
            }
            Ok(())
        }
        ir::Control::Invoke(i) => {
            if s.get_attributes().get(ir::NumAttr::Sync).is_some() {
                return Err(Error::malformed_control(
                    "Enable or Invoke controls cannot be marked with @sync"
                        .to_string(),
                )
                .with_pos(&i.attributes));
            }
            Ok(())
        }
        ir::Control::Par(_) => Ok(()),
        ir::Control::Static(_) => Ok(()),
    }
}

impl CompileSync {
    fn build_barriers(
        &mut self,
        builder: &mut ir::Builder,
        s: &mut ir::Control,
        count: &mut HashMap<u64, u64>,
    ) {
        match s {
            ir::Control::Empty(_) => {
                if let Some(ref n) = s.get_attributes().get(ir::NumAttr::Sync) {
                    if self.barriers.get(n).is_none() {
                        self.add_shared_structure(builder, n);
                    }
                    let (cells, groups) = &self.barriers[n];
                    let member_idx = count[n];

                    let mut new_s =
                        build_member(builder, cells, groups, &member_idx);
                    std::mem::swap(s, &mut new_s);
                }
            }
            ir::Control::Seq(seq) => {
                // go through each control statement
                // if @sync
                // see if we already have the set of shared primitives and groups
                // initialized
                // True -> generate the inidividual groups and buikld the seq stmt
                // False -> generate the shared groups, cells
                //          put the shared groups in the barriermap
                //          generate the individual groups
                //          build the seq stmt
                for stmt in seq.stmts.iter_mut() {
                    self.build_barriers(builder, stmt, count);
                }
            }
            ir::Control::While(w) => {
                self.build_barriers(builder, &mut w.body, count);
            }
            ir::Control::If(i) => {
                self.build_barriers(builder, &mut i.tbranch, count);
                self.build_barriers(builder, &mut i.fbranch, count);
            }
            _ => {}
        }
    }

    fn add_shared_structure(
        &mut self,
        builder: &mut ir::Builder,
        barrier_idx: &u64,
    ) {
        structure!(builder;
                let barrier = prim std_sync_reg(32);
                let eq = prim std_eq(32);
        );
        let restore = build_restore(builder, &barrier);
        let wait_restore = build_wait_restore(builder, &eq);
        let clear_barrier = build_clear_barrier(builder, &barrier);
        let shared_cells: [RRC<ir::Cell>; 2] = [barrier, eq];
        let shared_groups: [RRC<ir::Group>; 3] =
            [wait_restore, restore, clear_barrier];
        let info = (shared_cells, shared_groups);
        self.barriers.insert(*barrier_idx, info);
    }
}

//put together the group to read and increment the barrier
fn build_incr_barrier(
    builder: &mut ir::Builder,
    barrier: &RRC<ir::Cell>,
    save: &RRC<ir::Cell>,
    member_idx: &u64,
) -> RRC<ir::Group> {
    let group = builder.add_group("incr_barrier");
    structure!(builder;
        let incr = prim std_add(32);
        let cst_1 = constant(1, 1);
        let cst_2 = constant(1, 32););
    let read_done_guard = guard!(barrier[format!("read_done_{member_idx}")]);
    let assigns = build_assignments!(builder;
        // barrier_*.read_en_0 = 1'd1;
        barrier[format!("read_en_{member_idx}")] = ?cst_1["out"];
        //incr_*_*.left = barrier_*.out_*;
        incr["left"] = ? barrier[format!("out_{member_idx}")];
        // incr_*_*.right = 32'd1;
        incr["right"] = ? cst_2["out"];
        // save_*_*.in = barrier_*.read_done_*? incr_1.out;
        save["in"] = read_done_guard? incr["out"];
        // save_*_*.write_en = barrier_*.read_done_*;
        save["write_en"] = ? barrier[format!("read_done_{member_idx}")];
        // incr_barrier_*_*[done] = save_*_*.done;
        group["done"] = ?save["done"];
    );

    group.borrow_mut().assignments.extend(assigns);
    group
}

// put together the group to write to the barrier after incrementing
fn build_write_barrier(
    builder: &mut ir::Builder,
    barrier: &RRC<ir::Cell>,
    save: &RRC<ir::Cell>,
    member_idx: &u64,
) -> RRC<ir::Group> {
    let group = builder.add_group("write_barrier");
    structure!(builder;
    let cst_1 = constant(1, 1););
    let assigns = build_assignments!(builder;
        // barrier_*.write_en_* = 1'd1;
        barrier[format!("write_en_{member_idx}")] = ?cst_1["out"];
        // barrier_*.in_* = save_*_*.out;
        barrier[format!("in_{member_idx}")] = ?save["out"];
        // write_barrier_*_*[done] = barrier_*.write_done_*;
        group["done"] = ?barrier[format!("write_done_{member_idx}")];
    );
    group.borrow_mut().assignments.extend(assigns);
    group
}

// Put together the group to wait until the peek value reaches capacity.
// We don't actually care about the value being written to the register.
// We're only using it to make sure that the barrier has reached the expected
// value.
fn build_wait(builder: &mut ir::Builder, eq: &RRC<ir::Cell>) -> RRC<ir::Group> {
    let group = builder.add_group("wt");
    structure!(builder;
    let wait_reg = prim std_reg(1);
    let cst_1 = constant(1, 1););
    let eq_guard = guard!(eq["out"]);
    let assigns = build_assignments!(builder;
        // wait_reg_*.in = eq_*.out;
        // XXX(rachit): Since the value doesn't matter, can this just be zero?
        wait_reg["in"] = ?eq["out"];
        // wait_reg_*.write_en = eq_*.out? 1'd1;
        wait_reg["write_en"] = eq_guard? cst_1["out"];
        // wait_*[done] = wait_reg_*.done;
        group["done"] = ?wait_reg["done"];);
    group.borrow_mut().assignments.extend(assigns);
    group
}

// put together the group to empty out the sync reg before resetting it to 0
fn build_clear_barrier(
    builder: &mut ir::Builder,
    barrier: &RRC<ir::Cell>,
) -> RRC<ir::Group> {
    let group = builder.add_group("clear_barrier");
    structure!(builder;
    let cst_1 = constant(1, 1););
    let assigns = build_assignments!(builder;
    // barrier_*.read_en_0 = 1'd1;
    barrier["read_en_0"] = ?cst_1["out"];
    //clear_barrier_*[done] = barrier_1.read_done_0;
    group["done"] = ?barrier["read_done_0"];
    );
    group.borrow_mut().assignments.extend(assigns);
    group
}

// put together the group to restore the barrier to 0
fn build_restore(
    builder: &mut ir::Builder,
    barrier: &RRC<ir::Cell>,
) -> RRC<ir::Group> {
    let group = builder.add_group("restore");
    structure!(builder;
    let cst_1 = constant(1,1);
    let cst_2 = constant(0, 32););
    let assigns = build_assignments!(builder;
        // barrier_*.write_en_0 = 1'd1;
        barrier["write_en_0"] = ?cst_1["out"];
        // barrier_*.in_0 = 32'd0;
        barrier["in_0"] = ?cst_2["out"];
        // restore_*[done] = barrier_*.write_done_0;
        group["done"] = ?barrier["write_done_0"];
    );
    group.borrow_mut().assignments.extend(assigns);
    group
}

// Put together the group to wait for restorer to finish.
// Like the wait group, we don't care about the value in the register
// We just want to wait till the value in the barrier is set to 0.
fn build_wait_restore(
    builder: &mut ir::Builder,
    eq: &RRC<ir::Cell>,
) -> RRC<ir::Group> {
    let group = builder.add_group("wait_restore");
    structure!(builder;
    let wait_restore_reg = prim std_reg(1);
    let cst_1 = constant(1, 1););
    let eq_guard = !guard!(eq["out"]);
    let assigns = build_assignments!(builder;
    // wait_restore_reg_*.in = !eq_*.out? 1'd1;
    wait_restore_reg["in"] = eq_guard? cst_1["out"];
    // wait_restore_reg_*.write_en = !eq_*.out? 1'd1;
    wait_restore_reg["write_en"] = eq_guard? cst_1["out"];
    //wait_restore_*[done] = wait_restore_reg_*.done;
    group["done"] = ?wait_restore_reg["done"];
    );
    group.borrow_mut().assignments.extend(assigns);
    group
}

// put together the sequence of groups that a barrier member requires
fn build_member(
    builder: &mut ir::Builder,
    cells: &[RRC<ir::Cell>; 2],
    groups: &[RRC<ir::Group>; 3],
    member_idx: &u64,
) -> ir::Control {
    let mut stmts: Vec<ir::Control> = Vec::new();

    let barrier = Rc::clone(&cells[0]);
    let eq = Rc::clone(&cells[1]);
    let wait_restore = Rc::clone(&groups[0]);
    let restore = Rc::clone(&groups[1]);
    let clear_barrier = Rc::clone(&groups[2]);

    structure!(builder;
        let save = prim std_reg(32););
    let incr_barrier =
        build_incr_barrier(builder, &barrier, &save, &(member_idx - 1));
    let write_barrier =
        build_write_barrier(builder, &barrier, &save, &(member_idx - 1));
    let wait = build_wait(builder, &eq);

    stmts.push(ir::Control::enable(incr_barrier));
    stmts.push(ir::Control::enable(write_barrier));
    stmts.push(ir::Control::enable(wait));
    if member_idx == &1 {
        stmts.push(ir::Control::enable(clear_barrier));
        stmts.push(ir::Control::enable(restore));
    } else {
        stmts.push(ir::Control::enable(wait_restore));
    }
    ir::Control::seq(stmts)
}

impl Visitor for CompileSync {
    fn finish_par(
        &mut self,
        s: &mut ir::Par,
        comp: &mut ir::Component,
        sigs: &ir::LibrarySignatures,
        _comps: &[ir::Component],
    ) -> VisResult {
        let mut builder = ir::Builder::new(comp, sigs);
        let mut barrier_count: HashMap<u64, u64> = HashMap::new();
        for stmt in s.stmts.iter_mut() {
            let mut cnt: HashSet<u64> = HashSet::new();
            count_barriers(stmt, &mut cnt)?;
            for barrier in cnt {
                barrier_count
                    .entry(barrier)
                    .and_modify(|count| *count += 1)
                    .or_insert(1);
            }
            self.build_barriers(&mut builder, stmt, &mut barrier_count);
        }

        if self.barriers.is_empty() {
            return Ok(Action::Continue);
        }

        let mut init_barriers: Vec<ir::Control> = Vec::new();
        for (n, (cells, groups)) in self.barriers.iter() {
            let barrier = Rc::clone(&cells[0]);
            let eq = Rc::clone(&cells[1]);
            let restore = Rc::clone(&groups[1]);
            let n_members = barrier_count.get(n).unwrap();
            structure!(builder;
                let num_members = constant(*n_members, 32);
            );
            // add continuous assignments
            let assigns = build_assignments!(builder;
            // eq_*.left = barrier_*.peek;
            eq["left"] = ?barrier["peek"];
            // eq_*.right = 32'd* (number of members);
            eq["right"] = ?num_members["out"];
            );
            builder.component.continuous_assignments.extend(assigns);

            init_barriers.push(ir::Control::enable(restore));
        }

        // wrap the par stmt in a seq stmt so that barriers are initialized
        let mut changed_sequence: Vec<ir::Control> =
            vec![ir::Control::par(init_barriers)];
        let mut copied_par_stmts: Vec<ir::Control> = Vec::new();
        for con in s.stmts.drain(..) {
            copied_par_stmts.push(con);
        }
        changed_sequence.push(ir::Control::par(copied_par_stmts));

        Ok(Action::change(ir::Control::seq(changed_sequence)))
    }
}