calyx_opt/passes/top_down_compile_control.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
use super::math_utilities::get_bit_width_from;
use crate::passes;
use crate::traversal::{
Action, ConstructVisitor, Named, ParseVal, PassOpt, VisResult, Visitor,
};
use calyx_ir::{
self as ir, BoolAttr, Cell, GetAttributes, LibrarySignatures, Printer, RRC,
};
use calyx_ir::{Id, build_assignments, guard, structure};
use calyx_utils::Error;
use calyx_utils::{CalyxResult, OutputFile};
use ir::Nothing;
use itertools::Itertools;
use petgraph::graph::DiGraph;
use serde::Serialize;
use std::collections::{HashMap, HashSet};
use std::io::Write;
use std::rc::Rc;
const NODE_ID: ir::Attribute =
ir::Attribute::Internal(ir::InternalAttr::NODE_ID);
const DUPLICATE_NUM_REG: u64 = 2;
/// Computes the exit edges of a given [ir::Control] program.
///
/// ## Example
/// In the following Calyx program:
/// ```
/// while comb_reg.out {
/// seq {
/// @NODE_ID(4) incr;
/// @NODE_ID(5) cond0;
/// }
/// }
/// ```
/// The exit edge is is `[(5, cond0[done])]` indicating that the state 5 exits when the guard
/// `cond0[done]` is true.
///
/// Multiple exit points are created when conditions are used:
/// ```
/// while comb_reg.out {
/// @NODE_ID(7) incr;
/// if comb_reg2.out {
/// @NODE_ID(8) tru;
/// } else {
/// @NODE_ID(9) fal;
/// }
/// }
/// ```
/// The exit set is `[(8, tru[done] & !comb_reg.out), (9, fal & !comb_reg.out)]`.
fn control_exits(con: &ir::Control, exits: &mut Vec<PredEdge>) {
match con {
ir::Control::Empty(_) => {}
ir::Control::Enable(ir::Enable { group, attributes }) => {
let cur_state = attributes.get(NODE_ID).unwrap();
exits.push((cur_state, guard!(group["done"])))
}
ir::Control::Seq(ir::Seq { stmts, .. }) => {
if let Some(stmt) = stmts.last() {
control_exits(stmt, exits)
}
}
ir::Control::If(ir::If {
tbranch, fbranch, ..
}) => {
control_exits(tbranch, exits);
control_exits(fbranch, exits)
}
ir::Control::While(ir::While { body, port, .. }) => {
let mut loop_exits = vec![];
control_exits(body, &mut loop_exits);
// Loop exits only happen when the loop guard is false
exits.extend(
loop_exits
.into_iter()
.map(|(s, g)| (s, g & !ir::Guard::from(port.clone()))),
);
}
ir::Control::Repeat(_) => unreachable!(
"`repeat` statements should have been compiled away. Run `{}` before this pass.",
passes::CompileRepeat::name()
),
ir::Control::Invoke(_) => unreachable!(
"`invoke` statements should have been compiled away. Run `{}` before this pass.",
passes::CompileInvoke::name()
),
ir::Control::Par(_) => unreachable!(),
ir::Control::Static(_) => unreachable!(
" static control should have been compiled away. Run the static compilation passes before this pass"
),
}
}
/// Adds the @NODE_ID attribute to [ir::Enable] and [ir::Par].
/// Each [ir::Enable] gets a unique label within the context of a child of
/// a [ir::Par] node.
/// Furthermore, if an if/while/seq statement is labeled with a `new_fsm` attribute,
/// then it will get its own unique label. Within that if/while/seq, each enable
/// will get its own unique label within the context of that if/while/seq (see
/// example for clarification).
///
/// ## Example:
/// ```
/// seq { A; B; par { C; D; }; E; @new_fsm seq {F; G; H}}
/// ```
/// gets the labels:
/// ```
/// seq {
/// @NODE_ID(1) A; @NODE_ID(2) B;
/// @NODE_ID(3) par {
/// @NODE_ID(0) C;
/// @NODE_ID(0) D;
/// }
/// @NODE_ID(4) E;
/// @NODE_ID(5) seq{
/// @NODE_ID(0) F;
/// @NODE_ID(1) G;
/// @NODE_ID(2) H;
/// }
/// }
/// ```
///
/// These identifiers are used by the compilation methods [calculate_states_recur]
/// and [control_exits].
fn compute_unique_ids(con: &mut ir::Control, cur_state: u64) -> u64 {
match con {
ir::Control::Enable(ir::Enable { attributes, .. }) => {
attributes.insert(NODE_ID, cur_state);
cur_state + 1
}
ir::Control::Par(ir::Par { stmts, attributes }) => {
attributes.insert(NODE_ID, cur_state);
stmts.iter_mut().for_each(|stmt| {
compute_unique_ids(stmt, 0);
});
cur_state + 1
}
ir::Control::Seq(ir::Seq { stmts, attributes }) => {
let new_fsm = attributes.has(ir::BoolAttr::NewFSM);
// if new_fsm is true, then insert attribute at the seq, and then
// start over counting states from 0
let mut cur = if new_fsm {
attributes.insert(NODE_ID, cur_state);
0
} else {
cur_state
};
stmts.iter_mut().for_each(|stmt| {
cur = compute_unique_ids(stmt, cur);
});
// If new_fsm is true then we want to return cur_state + 1, since this
// seq should really only take up 1 "state" on the "outer" fsm
if new_fsm { cur_state + 1 } else { cur }
}
ir::Control::If(ir::If {
tbranch,
fbranch,
attributes,
..
}) => {
let new_fsm = attributes.has(ir::BoolAttr::NewFSM);
// if new_fsm is true, then we want to add an attribute to this
// control statement
if new_fsm {
attributes.insert(NODE_ID, cur_state);
}
// If the program starts with a branch then branches can't get
// the initial state.
// Also, if new_fsm is true, we want to start with state 1 as well:
// we can't start at 0 for the reason mentioned above
let cur = if new_fsm || cur_state == 0 {
1
} else {
cur_state
};
let tru_nxt = compute_unique_ids(tbranch, cur);
let false_nxt = compute_unique_ids(fbranch, tru_nxt);
// If new_fsm is true then we want to return cur_state + 1, since this
// if stmt should really only take up 1 "state" on the "outer" fsm
if new_fsm { cur_state + 1 } else { false_nxt }
}
ir::Control::While(ir::While {
body, attributes, ..
}) => {
let new_fsm = attributes.has(ir::BoolAttr::NewFSM);
// if new_fsm is true, then we want to add an attribute to this
// control statement
if new_fsm {
attributes.insert(NODE_ID, cur_state);
}
// If the program starts with a branch then branches can't get
// the initial state.
// Also, if new_fsm is true, we want to start with state 1 as well:
// we can't start at 0 for the reason mentioned above
let cur = if new_fsm || cur_state == 0 {
1
} else {
cur_state
};
let body_nxt = compute_unique_ids(body, cur);
// If new_fsm is true then we want to return cur_state + 1, since this
// while loop should really only take up 1 "state" on the "outer" fsm
if new_fsm { cur_state + 1 } else { body_nxt }
}
ir::Control::Empty(_) => cur_state,
ir::Control::Repeat(_) => unreachable!(
"`repeat` statements should have been compiled away. Run `{}` before this pass.",
passes::CompileRepeat::name()
),
ir::Control::Invoke(_) => unreachable!(
"`invoke` statements should have been compiled away. Run `{}` before this pass.",
passes::CompileInvoke::name()
),
ir::Control::Static(_) => unreachable!(
"static control should have been compiled away. Run the static compilation passes before this pass"
),
}
}
/// Given the state of the FSM, returns the index for the register in `fsms``
/// that should be queried.
/// A query for each state must read from one of the `num_registers` registers.
/// For `r` registers and `n` states, we split into "buckets" as follows:
/// `{0, ... , n/r - 1} -> reg. @ index 0`,
/// `{n/r, ... , 2n/r - 1} -> reg. @ index 1`,
/// ...,
/// `{(r-1)n/r, ... , n - 1} -> reg. @ index n - 1`.
/// Note that dividing each state by the value `n/r`normalizes the state w.r.t.
/// the FSM register from which it should read. We can then take the floor of this value
/// (or, equivalently, use unsigned integer division) to get this register index.
fn register_to_query(
state: u64,
num_states: u64,
num_registers: u64,
distribute: bool,
) -> usize {
match distribute {
true => {
// num_states+1 is needed to prevent error (the done condition needs
// to check past the number of states, i.e., will check fsm == 3 when
// num_states == 3).
(state * num_registers / (num_states + 1))
.try_into()
.unwrap()
}
false => 0,
}
}
#[derive(Clone, Copy)]
enum RegisterEncoding {
Binary,
OneHot,
}
#[derive(Clone, Copy)]
enum RegisterSpread {
// Default option: just a single register
Single,
// Duplicate the register to reduce fanout when querying
// (all FSMs in this vec still have all of the states)
Duplicate,
}
#[derive(Clone, Copy)]
/// A type that represents how the FSM should be implemented in hardware.
struct FSMRepresentation {
// the representation of a state within a register (one-hot, binary, etc.)
encoding: RegisterEncoding,
// the number of registers representing the dynamic finite state machine
spread: RegisterSpread,
// the index of the last state in the fsm (total # states = last_state + 1)
last_state: u64,
}
/// Represents the dyanmic execution schedule of a control program.
struct Schedule<'b, 'a: 'b> {
/// A mapping from groups to corresponding FSM state ids
pub groups_to_states: HashSet<FSMStateInfo>,
/// Assigments that should be enabled in a given state.
pub enables: HashMap<u64, Vec<ir::Assignment<Nothing>>>,
/// Transition from one state to another when the guard is true.
pub transitions: Vec<(u64, u64, ir::Guard<Nothing>)>,
/// The component builder. The reference has a shorter lifetime than the builder itself
/// to allow multiple schedules to use the same builder.
pub builder: &'b mut ir::Builder<'a>,
}
/// Information to serialize for profiling purposes
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
enum ProfilingInfo {
Fsm(FSMInfo),
SingleEnable(SingleEnableInfo),
}
/// Information to be serialized for a group that isn't managed by a FSM
/// This can happen if the group is the only group in a control block or a par arm
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
struct SingleEnableInfo {
#[serde(serialize_with = "id_serialize_passthrough")]
pub component: Id,
#[serde(serialize_with = "id_serialize_passthrough")]
pub group: Id,
}
/// Information to be serialized for a single FSM
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
struct FSMInfo {
#[serde(serialize_with = "id_serialize_passthrough")]
pub component: Id,
#[serde(serialize_with = "id_serialize_passthrough")]
pub group: Id,
#[serde(serialize_with = "id_serialize_passthrough")]
pub fsm: Id,
pub states: Vec<FSMStateInfo>,
}
/// Mapping of FSM state ids to corresponding group names
#[derive(PartialEq, Eq, Hash, Clone, Serialize)]
struct FSMStateInfo {
id: u64,
#[serde(serialize_with = "id_serialize_passthrough")]
group: Id,
}
fn id_serialize_passthrough<S>(id: &Id, ser: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
id.to_string().serialize(ser)
}
impl<'b, 'a> From<&'b mut ir::Builder<'a>> for Schedule<'b, 'a> {
fn from(builder: &'b mut ir::Builder<'a>) -> Self {
Schedule {
groups_to_states: HashSet::new(),
enables: HashMap::new(),
transitions: Vec::new(),
builder,
}
}
}
impl Schedule<'_, '_> {
/// Validate that all states are reachable in the transition graph.
fn validate(&self) {
let graph = DiGraph::<(), u32>::from_edges(
self.transitions
.iter()
.map(|(s, e, _)| (*s as u32, *e as u32)),
);
debug_assert!(
petgraph::algo::connected_components(&graph) == 1,
"State transition graph has unreachable states (graph has more than one connected component)."
);
}
/// Return the max state in the transition graph
fn last_state(&self) -> u64 {
self.transitions
.iter()
.max_by_key(|(_, s, _)| s)
.expect("Schedule::transition is empty!")
.1
}
/// Print out the current schedule
fn display(&self, group: String) {
let out = &mut std::io::stdout();
writeln!(out, "======== {} =========", group).unwrap();
self.enables
.iter()
.sorted_by(|(k1, _), (k2, _)| k1.cmp(k2))
.for_each(|(state, assigns)| {
writeln!(out, "{}:", state).unwrap();
assigns.iter().for_each(|assign| {
Printer::write_assignment(assign, 2, out).unwrap();
writeln!(out).unwrap();
})
});
writeln!(out, "{}:\n <end>", self.last_state()).unwrap();
writeln!(out, "transitions:").unwrap();
self.transitions
.iter()
.sorted_by(|(k1, _, _), (k2, _, _)| k1.cmp(k2))
.for_each(|(i, f, g)| {
writeln!(out, " ({}, {}): {}", i, f, Printer::guard_str(g))
.unwrap();
});
}
/// First chooses which register to query from (only relevant in the duplication case.)
/// Then queries the FSM by building a new slicer and corresponding assignments if
/// the query hasn't yet been made. If this query has been made before with one-hot
/// encoding, it reuses the old query, but always returns a new guard representing the query.
fn query_state(
builder: &mut ir::Builder,
used_slicers_vec: &mut [HashMap<u64, RRC<Cell>>],
fsm_rep: &FSMRepresentation,
hardware: (&[RRC<ir::Cell>], &RRC<Cell>),
state: &u64,
fsm_size: &u64,
distribute: bool,
) -> ir::Guard<Nothing> {
let (fsms, signal_on) = hardware;
let (fsm, used_slicers) = {
let reg_to_query = register_to_query(
*state,
fsm_rep.last_state,
fsms.len().try_into().unwrap(),
distribute,
);
(
fsms.get(reg_to_query)
.expect("the register at this index does not exist"),
used_slicers_vec
.get_mut(reg_to_query)
.expect("the used slicer map at this index does not exist"),
)
};
match fsm_rep.encoding {
RegisterEncoding::Binary => {
let state_const = builder.add_constant(*state, *fsm_size);
let state_guard = guard!(fsm["out"] == state_const["out"]);
state_guard
}
RegisterEncoding::OneHot => {
match used_slicers.get(state) {
None => {
// construct slicer for this bit query
structure!(
builder;
let slicer = prim std_bit_slice(*fsm_size, *state, *state, 1);
);
// build wire from fsm to slicer
let fsm_to_slicer = builder.build_assignment(
slicer.borrow().get("in"),
fsm.borrow().get("out"),
ir::Guard::True,
);
// add continuous assignments to slicer
builder
.component
.continuous_assignments
.push(fsm_to_slicer);
// create a guard representing when to allow next-state transition
let state_guard =
guard!(slicer["out"] == signal_on["out"]);
used_slicers.insert(*state, slicer);
state_guard
}
Some(slicer) => {
let state_guard =
guard!(slicer["out"] == signal_on["out"]);
state_guard
}
}
}
}
}
/// Builds the register(s) and constants needed for a given encoding and spread type.
fn build_fsm_infrastructure(
builder: &mut ir::Builder,
fsm_rep: &FSMRepresentation,
) -> (Vec<RRC<Cell>>, RRC<Cell>, u64) {
// get fsm bit width and build constant emitting fsm first state
let (fsm_size, first_state) = match fsm_rep.encoding {
RegisterEncoding::Binary => {
let fsm_size = get_bit_width_from(fsm_rep.last_state + 1);
(fsm_size, builder.add_constant(0, fsm_size))
}
RegisterEncoding::OneHot => {
let fsm_size = fsm_rep.last_state + 1;
(fsm_size, builder.add_constant(1, fsm_size))
}
};
// for the given number of fsm registers to read from, add a primitive register to the design for each
let mut add_fsm_regs = |prim_name: &str, num_regs: u64| {
(0..num_regs)
.map(|n| {
let fsm_name = if num_regs == 1 {
"fsm".to_string()
} else {
format!("fsm{}", n)
};
builder.add_primitive(
fsm_name.as_str(),
prim_name,
&[fsm_size],
)
})
.collect_vec()
};
let fsms = match (fsm_rep.encoding, fsm_rep.spread) {
(RegisterEncoding::Binary, RegisterSpread::Single) => {
add_fsm_regs("std_reg", 1)
}
(RegisterEncoding::OneHot, RegisterSpread::Single) => {
add_fsm_regs("init_one_reg", 1)
}
(RegisterEncoding::Binary, RegisterSpread::Duplicate) => {
add_fsm_regs("std_reg", DUPLICATE_NUM_REG)
}
(RegisterEncoding::OneHot, RegisterSpread::Duplicate) => {
add_fsm_regs("init_one_reg", DUPLICATE_NUM_REG)
}
};
(fsms, first_state, fsm_size)
}
/// Implement a given [Schedule] and return the name of the [ir::Group] that
/// implements it.
fn realize_schedule(
self,
dump_fsm: bool,
fsm_groups: &mut HashSet<ProfilingInfo>,
fsm_rep: FSMRepresentation,
) -> RRC<ir::Group> {
// confirm all states are reachable
self.validate();
// build tdcc group
let group = self.builder.add_group("tdcc");
if dump_fsm {
self.display(format!(
"{}:{}",
self.builder.component.name,
group.borrow().name()
));
}
// build necessary primitives dependent on encoding and spread
let signal_on = self.builder.add_constant(1, 1);
let (fsms, first_state, fsm_size) =
Self::build_fsm_infrastructure(self.builder, &fsm_rep);
// get first fsm register
let fsm1 = fsms.first().expect("first fsm register does not exist");
// Add last state to JSON info
let mut states = self.groups_to_states.iter().cloned().collect_vec();
states.push(FSMStateInfo {
id: fsm_rep.last_state, // check that this register (fsm.0) is the correct one to use
group: Id::new(format!("{}_END", fsm1.borrow().name())),
});
// Keep track of groups to FSM state id information for dumping to json
fsm_groups.insert(ProfilingInfo::Fsm(FSMInfo {
component: self.builder.component.name,
fsm: fsm1.borrow().name(),
group: group.borrow().name(),
states,
}));
// keep track of used slicers if using one hot encoding. one for each register
let mut used_slicers_vec =
fsms.iter().map(|_| HashMap::new()).collect_vec();
// enable assignments
// the following enable queries; we can decide which register to query for state-dependent assignments
// because we know all registers precisely agree at each cycle
group.borrow_mut().assignments.extend(
self.enables
.into_iter()
.sorted_by(|(k1, _), (k2, _)| k1.cmp(k2))
.flat_map(|(state, mut assigns)| {
// for every assignment dependent on current fsm state, `&` new guard with existing guard
let state_guard = Self::query_state(
self.builder,
&mut used_slicers_vec,
&fsm_rep,
(&fsms, &signal_on),
&state,
&fsm_size,
true, // by default attempt to distribute across regs if >=2 exist
);
assigns.iter_mut().for_each(|asgn| {
asgn.guard.update(|g| g.and(state_guard.clone()))
});
assigns
}),
);
// transition assignments
// the following updates are meant to ensure agreement between the two
// fsm registers; hence, all registers must be updated if `duplicate` is chosen
group.borrow_mut().assignments.extend(
self.transitions.into_iter().flat_map(|(s, e, guard)| {
// get a transition guard for the first fsm register, and apply it to every fsm register
let state_guard = Self::query_state(
self.builder,
&mut used_slicers_vec,
&fsm_rep,
(&fsms, &signal_on),
&s,
&fsm_size,
false, // by default do not distribute transition queries across regs; choose first
);
// add transitions for every fsm register to ensure consistency between each
fsms.iter()
.flat_map(|fsm| {
let trans_guard =
state_guard.clone().and(guard.clone());
let end_const = match fsm_rep.encoding {
RegisterEncoding::Binary => {
self.builder.add_constant(e, fsm_size)
}
RegisterEncoding::OneHot => {
self.builder.add_constant(
u64::pow(
2,
e.try_into()
.expect("failed to convert to u32"),
),
fsm_size,
)
}
};
let ec_borrow = end_const.borrow();
vec![
self.builder.build_assignment(
fsm.borrow().get("in"),
ec_borrow.get("out"),
trans_guard.clone(),
),
self.builder.build_assignment(
fsm.borrow().get("write_en"),
signal_on.borrow().get("out"),
trans_guard,
),
]
})
.collect_vec()
}),
);
// done condition for group
// arbitrarily look at first fsm register, since all are identical
let first_fsm_last_guard = Self::query_state(
self.builder,
&mut used_slicers_vec,
&fsm_rep,
(&fsms, &signal_on),
&fsm_rep.last_state,
&fsm_size,
false,
);
let done_assign = self.builder.build_assignment(
group.borrow().get("done"),
signal_on.borrow().get("out"),
first_fsm_last_guard.clone(),
);
group.borrow_mut().assignments.push(done_assign);
// Cleanup: Add a transition from last state to the first state for each register
let reset_fsms = fsms
.iter()
.flat_map(|fsm| {
// by default, query first register
let fsm_last_guard = Self::query_state(
self.builder,
&mut used_slicers_vec,
&fsm_rep,
(&fsms, &signal_on),
&fsm_rep.last_state,
&fsm_size,
false,
);
let reset_fsm = build_assignments!(self.builder;
fsm["in"] = fsm_last_guard ? first_state["out"];
fsm["write_en"] = fsm_last_guard ? signal_on["out"];
);
reset_fsm.to_vec()
})
.collect_vec();
// extend with conditions to set all fsms to initial state
self.builder
.component
.continuous_assignments
.extend(reset_fsms);
group
}
}
/// Represents an edge from a predeccesor to the current control node.
/// The `u64` represents the FSM state of the predeccesor and the guard needs
/// to be true for the predeccesor to transition to the current state.
type PredEdge = (u64, ir::Guard<Nothing>);
impl Schedule<'_, '_> {
/// Recursively build an dynamic finite state machine represented by a [Schedule].
/// Does the following, given an [ir::Control]:
/// 1. If needed, add transitions from predeccesors to the current state.
/// 2. Enable the groups in the current state
/// 3. Calculate [PredEdge] implied by this state
/// 4. Return [PredEdge] and the next state.
/// Another note: the functions calc_seq_recur, calc_while_recur, and calc_if_recur
/// are functions that `calculate_states_recur` uses for when con is a seq, while,
/// and if respectively. The reason why they are defined as separate functions is because we
/// need to call `calculate_seq_recur` (for example) directly when we are in `finish_seq`
/// since `finish_seq` only gives us access to a `& mut seq` type, not a `& Control`
/// type.
fn calculate_states_recur(
// Current schedule.
&mut self,
con: &ir::Control,
// The set of previous states that want to transition into cur_state
preds: Vec<PredEdge>,
// True if early_transitions are allowed
early_transitions: bool,
// True if the `@fast` attribute has successfully been applied to the parent of this control
has_fast_guarantee: bool,
) -> CalyxResult<Vec<PredEdge>> {
match con {
// See explanation of FSM states generated in [ir::TopDownCompileControl].
ir::Control::Enable(ir::Enable { group, attributes }) => {
let cur_state = attributes.get(NODE_ID).unwrap_or_else(|| {
panic!(
"Group `{}` does not have node_id information",
group.borrow().name()
)
});
// If there is exactly one previous transition state with a `true`
// guard, then merge this state into previous state.
// This happens when the first control statement is an enable not
// inside a branch.
let (cur_state, prev_states) =
if preds.len() == 1 && preds[0].1.is_true() {
(preds[0].0, vec![])
} else {
(cur_state, preds)
};
// Add group to mapping for emitting group JSON info
self.groups_to_states.insert(FSMStateInfo {
id: cur_state,
group: group.borrow().name(),
});
let not_done = !guard!(group["done"]);
let signal_on = self.builder.add_constant(1, 1);
// Activate this group in the current state
let en_go = build_assignments!(self.builder;
group["go"] = not_done ? signal_on["out"];
);
self.enables.entry(cur_state).or_default().extend(en_go);
// Activate group in the cycle when previous state signals done.
// NOTE: We explicilty do not add `not_done` to the guard.
// See explanation in [ir::TopDownCompileControl] to understand
// why.
if early_transitions || has_fast_guarantee {
for (st, g) in &prev_states {
let early_go = build_assignments!(self.builder;
group["go"] = g ? signal_on["out"];
);
self.enables.entry(*st).or_default().extend(early_go);
}
}
let transitions = prev_states
.into_iter()
.map(|(st, guard)| (st, cur_state, guard));
self.transitions.extend(transitions);
let done_cond = guard!(group["done"]);
Ok(vec![(cur_state, done_cond)])
}
ir::Control::Seq(seq) => {
self.calc_seq_recur(seq, preds, early_transitions)
}
ir::Control::If(if_stmt) => {
self.calc_if_recur(if_stmt, preds, early_transitions)
}
ir::Control::While(while_stmt) => {
self.calc_while_recur(while_stmt, preds, early_transitions)
}
ir::Control::Par(_) => unreachable!(),
ir::Control::Repeat(_) => unreachable!(
"`repeat` statements should have been compiled away. Run `{}` before this pass.",
passes::CompileRepeat::name()
),
ir::Control::Invoke(_) => unreachable!(
"`invoke` statements should have been compiled away. Run `{}` before this pass.",
passes::CompileInvoke::name()
),
ir::Control::Empty(_) => unreachable!(
"`calculate_states_recur` should not see an `empty` control."
),
ir::Control::Static(_) => unreachable!(
"static control should have been compiled away. Run the static compilation passes before this pass"
),
}
}
/// Builds a finite state machine for `seq` represented by a [Schedule].
/// At a high level, it iterates through each stmt in the seq's control, using the
/// previous stmt's [PredEdge] as the `preds` for the current stmt, and returns
/// the [PredEdge] implied by the last stmt in `seq`'s control.
fn calc_seq_recur(
&mut self,
seq: &ir::Seq,
// The set of previous states that want to transition into cur_state
preds: Vec<PredEdge>,
// True if early_transitions are allowed
early_transitions: bool,
) -> CalyxResult<Vec<PredEdge>> {
let mut prev = preds;
for (i, stmt) in seq.stmts.iter().enumerate() {
prev = self.calculate_states_recur(
stmt,
prev,
early_transitions,
i > 0 && seq.get_attributes().has(BoolAttr::Fast),
)?;
}
Ok(prev)
}
/// Builds a finite state machine for `if_stmt` represented by a [Schedule].
/// First generates the transitions into the true branch + the transitions that exist
/// inside the true branch. Then generates the transitions into the false branch + the transitions
/// that exist inside the false branch. Then calculates the transitions needed to
/// exit the if statmement (which include edges from both the true and false branches).
fn calc_if_recur(
&mut self,
if_stmt: &ir::If,
// The set of previous states that want to transition into cur_state
preds: Vec<PredEdge>,
// True if early_transitions are allowed
early_transitions: bool,
) -> CalyxResult<Vec<PredEdge>> {
if if_stmt.cond.is_some() {
return Err(Error::malformed_structure(format!(
"{}: Found group `{}` in with position of if. This should have compiled away.",
TopDownCompileControl::name(),
if_stmt.cond.as_ref().unwrap().borrow().name()
)));
}
let port_guard: ir::Guard<Nothing> = Rc::clone(&if_stmt.port).into();
// Previous states transitioning into true branch need the conditional
// to be true.
let tru_transitions = preds
.clone()
.into_iter()
.map(|(s, g)| (s, g & port_guard.clone()))
.collect();
let tru_prev = self.calculate_states_recur(
&if_stmt.tbranch,
tru_transitions,
early_transitions,
false,
)?;
// Previous states transitioning into false branch need the conditional
// to be false.
let fal_transitions = preds
.into_iter()
.map(|(s, g)| (s, g & !port_guard.clone()))
.collect();
let fal_prev = if let ir::Control::Empty(..) = *if_stmt.fbranch {
// If the false branch is empty, then all the prevs to this node will become prevs
// to the next node.
fal_transitions
} else {
self.calculate_states_recur(
&if_stmt.fbranch,
fal_transitions,
early_transitions,
false,
)?
};
let prevs = tru_prev.into_iter().chain(fal_prev).collect();
Ok(prevs)
}
/// Builds a finite state machine for `while_stmt` represented by a [Schedule].
/// It first generates the backwards edges (i.e., edges from the end of the while
/// body back to the beginning of the while body), then generates the forwards
/// edges in the body, then generates the edges that exit the while loop.
fn calc_while_recur(
&mut self,
while_stmt: &ir::While,
// The set of previous states that want to transition into cur_state
preds: Vec<PredEdge>,
// True if early_transitions are allowed
early_transitions: bool,
) -> CalyxResult<Vec<PredEdge>> {
if while_stmt.cond.is_some() {
return Err(Error::malformed_structure(format!(
"{}: Found group `{}` in with position of if. This should have compiled away.",
TopDownCompileControl::name(),
while_stmt.cond.as_ref().unwrap().borrow().name()
)));
}
let port_guard: ir::Guard<Nothing> = Rc::clone(&while_stmt.port).into();
// Step 1: Generate the backward edges by computing the exit nodes.
let mut exits = vec![];
control_exits(&while_stmt.body, &mut exits);
// Step 2: Generate the forward edges normally.
// Previous transitions into the body require the condition to be
// true.
let transitions: Vec<PredEdge> = preds
.clone()
.into_iter()
.chain(exits)
.map(|(s, g)| (s, g & port_guard.clone()))
.collect();
let prevs = self.calculate_states_recur(
&while_stmt.body,
transitions,
early_transitions,
false,
)?;
// Step 3: The final out edges from the while come from:
// - Before the body when the condition is false
// - Inside the body when the condition is false
let not_port_guard = !port_guard;
let all_prevs = preds
.into_iter()
.chain(prevs)
.map(|(st, guard)| (st, guard & not_port_guard.clone()))
.collect();
Ok(all_prevs)
}
/// Creates a Schedule that represents `seq`, mainly relying on `calc_seq_recur()`.
fn calculate_states_seq(
&mut self,
seq: &ir::Seq,
early_transitions: bool,
) -> CalyxResult<()> {
let first_state = (0, ir::Guard::True);
// We create an empty first state in case the control program starts with
// a branch (if, while).
// If the program doesn't branch, then the initial state is merged into
// the first group.
let prev =
self.calc_seq_recur(seq, vec![first_state], early_transitions)?;
self.add_nxt_transition(prev);
Ok(())
}
/// Creates a Schedule that represents `if`, mainly relying on `calc_if_recur()`.
fn calculate_states_if(
&mut self,
if_stmt: &ir::If,
early_transitions: bool,
) -> CalyxResult<()> {
let first_state = (0, ir::Guard::True);
// We create an empty first state in case the control program starts with
// a branch (if, while).
// If the program doesn't branch, then the initial state is merged into
// the first group.
let prev =
self.calc_if_recur(if_stmt, vec![first_state], early_transitions)?;
self.add_nxt_transition(prev);
Ok(())
}
/// Creates a Schedule that represents `while`, mainly relying on `calc_while_recur()`.
fn calculate_states_while(
&mut self,
while_stmt: &ir::While,
early_transitions: bool,
) -> CalyxResult<()> {
let first_state = (0, ir::Guard::True);
// We create an empty first state in case the control program starts with
// a branch (if, while).
// If the program doesn't branch, then the initial state is merged into
// the first group.
let prev = self.calc_while_recur(
while_stmt,
vec![first_state],
early_transitions,
)?;
self.add_nxt_transition(prev);
Ok(())
}
/// Given predecessors prev, creates a new "next" state and transitions from
/// each state in prev to the next state.
/// In other words, it just adds an "end" state to [Schedule] and the
/// appropriate transitions to that "end" state.
fn add_nxt_transition(&mut self, prev: Vec<PredEdge>) {
let nxt = prev
.iter()
.max_by(|(st1, _), (st2, _)| st1.cmp(st2))
.unwrap()
.0
+ 1;
let transitions = prev.into_iter().map(|(st, guard)| (st, nxt, guard));
self.transitions.extend(transitions);
}
/// Note: the functions calculate_states_seq, calculate_states_while, and calculate_states_if
/// are functions that basically do what `calculate_states` would do if `calculate_states` knew (for certain)
/// that its input parameter would be a seq/while/if.
/// The reason why we need to define these as separate functions is because `finish_seq`
/// (for example) we only gives us access to a `& mut seq` type, not a `& Control`
/// type.
fn calculate_states(
&mut self,
con: &ir::Control,
early_transitions: bool,
) -> CalyxResult<()> {
let first_state = (0, ir::Guard::True);
// We create an empty first state in case the control program starts with
// a branch (if, while).
// If the program doesn't branch, then the initial state is merged into
// the first group.
let prev = self.calculate_states_recur(
con,
vec![first_state],
early_transitions,
false,
)?;
self.add_nxt_transition(prev);
Ok(())
}
}
/// **Core lowering pass.**
/// Compiles away the control programs in components into purely structural code using an
/// finite-state machine (FSM).
///
/// Lowering operates in two steps:
/// 1. Compile all [ir::Par] control sub-programs into a single [ir::Enable] of a group that runs
/// all children to completion.
/// 2. Compile the top-level control program into a single [ir::Enable].
///
/// ## Compiling non-`par` programs
/// At very high-level, the pass assigns an FSM state to each [ir::Enable] in the program and
/// generates transitions to the state to activate the groups contained within the [ir::Enable].
///
/// The compilation process calculates all predeccesors of the [ir::Enable] while walking over the
/// control program. A predeccesor is any enable statement that can directly "jump" to the current
/// [ir::Enable]. The compilation process computes all such predeccesors and the guards that need
/// to be true for the predeccesor to jump into this enable statement.
///
/// ```
/// cond0;
/// while lt.out {
/// if gt.out { true } else { false }
/// }
/// next;
/// ```
/// The predeccesor sets are:
/// ```
/// cond0 -> []
/// true -> [(cond0, lt.out & gt.out); (true; lt.out & gt.out); (false, lt.out & !gt.out)]
/// false -> [(cond0, lt.out & !gt.out); (true; lt.out & gt.out); (false, lt.out & !gt.out)]
/// next -> [(cond0, !lt.out); (true, !lt.out); (false, !lt.out)]
/// ```
///
/// ### Compiling [ir::Enable]
/// The process first takes all edges from predeccesors and transitions to the state for this
/// enable and enables the group in this state:
/// ```text
/// let cur_state; // state of this enable
/// for (state, guard) in predeccesors:
/// transitions.insert(state, cur_state, guard)
/// enables.insert(cur_state, group)
/// ```
///
/// While this process will generate a functioning FSM, the FSM takes unnecessary cycles for FSM
/// transitions.
///
/// For example:
/// ```
/// seq { one; two; }
/// ```
/// The FSM generated will look like this (where `f` is the FSM register):
/// ```
/// f.in = one[done] ? 1;
/// f.in = two[done] ? 2;
/// one[go] = !one[done] & f.out == 0;
/// two[go] = !two[done] & f.out == 1;
/// ```
///
/// The cycle-level timing for this FSM will look like:
/// - cycle 0: (`f.out` == 0), enable one
/// - cycle t: (`f.out` == 0), (`one[done]` == 1), disable one
/// - cycle t+1: (`f.out` == 1), enable two
/// - cycle t+l: (`f.out` == 1), (`two[done]` == 1), disable two
/// - cycle t+l+1: finish
///
/// The transition t -> t+1 represents one where group one is done but group two hasn't started
/// executing.
///
/// To address this specific problem, there is an additional enable added to run all groups within
/// an enable *while the FSM is transitioning*.
/// The final transition will look like this:
/// ```
/// f.in = one[done] ? 1;
/// f.in = two[done] ? 2;
/// one[go] = !one[done] & f.out == 0;
/// two[go] = (!two[done] & f.out == 1) || (one[done] & f.out == 0);
/// ```
///
/// Note that `!two[done]` isn't present in the second disjunct because all groups are guaranteed
/// to run for at least one cycle and the second disjunct will only be true for one cycle before
/// the first disjunct becomes true.
///
/// ## Compiling `par` programs
/// We have to generate new FSM-based controller for each child of a `par` node so that each child
/// can indepdendently make progress.
/// If we tie the children to one top-level FSM, their transitions would become interdependent and
/// reduce available concurrency.
///
/// ## Compilation guarantee
/// At the end of this pass, the control program will have no more than one
/// group enable in it.
pub struct TopDownCompileControl {
/// Print out the FSM representation to STDOUT
dump_fsm: bool,
/// Output a JSON FSM representation to file if specified
dump_fsm_json: Option<OutputFile>,
/// Enable early transitions
early_transitions: bool,
/// Bookkeeping for FSM ids for groups across all FSMs in the program
fsm_groups: HashSet<ProfilingInfo>,
/// How many states the dynamic FSM must have before picking binary over one-hot
one_hot_cutoff: u64,
/// Number of states the dynamic FSM must have before picking duplicate over single register
duplicate_cutoff: u64,
}
impl TopDownCompileControl {
/// Given a dynamic schedule and attributes, selects a representation for
/// the finite state machine in hardware.
fn get_representation(
&self,
sch: &Schedule,
attrs: &ir::Attributes,
) -> FSMRepresentation {
let last_state = sch.last_state();
FSMRepresentation {
encoding: {
match (
attrs.has(BoolAttr::OneHot),
last_state <= self.one_hot_cutoff,
) {
(true, _) | (false, true) => RegisterEncoding::OneHot,
(false, false) => RegisterEncoding::Binary,
}
},
spread: {
match (last_state + 1) <= self.duplicate_cutoff {
true => RegisterSpread::Single,
false => RegisterSpread::Duplicate,
}
},
last_state,
}
}
}
impl ConstructVisitor for TopDownCompileControl {
fn from(ctx: &ir::Context) -> CalyxResult<Self>
where
Self: Sized + Named,
{
let opts = Self::get_opts(ctx);
Ok(TopDownCompileControl {
dump_fsm: opts[&"dump-fsm"].bool(),
dump_fsm_json: opts[&"dump-fsm-json"].not_null_outstream(),
early_transitions: opts[&"early-transitions"].bool(),
fsm_groups: HashSet::new(),
one_hot_cutoff: opts[&"one-hot-cutoff"]
.pos_num()
.expect("requires non-negative OHE cutoff parameter"),
duplicate_cutoff: opts[&"duplicate-cutoff"]
.pos_num()
.expect("requires non-negative duplicate cutoff parameter"),
})
}
fn clear_data(&mut self) {
/* All data can be transferred between components */
}
}
impl Named for TopDownCompileControl {
fn name() -> &'static str {
"tdcc"
}
fn description() -> &'static str {
"Top-down compilation for removing control constructs"
}
fn opts() -> Vec<PassOpt> {
vec![
PassOpt::new(
"dump-fsm",
"Print out the state machine implementing the schedule",
ParseVal::Bool(false),
PassOpt::parse_bool,
),
PassOpt::new(
"dump-fsm-json",
"Write the state machine implementing the schedule to a JSON file",
ParseVal::OutStream(OutputFile::Null),
PassOpt::parse_outstream,
),
PassOpt::new(
"early-transitions",
"Experimental: Enable early transitions for group enables",
ParseVal::Bool(false),
PassOpt::parse_bool,
),
PassOpt::new(
"one-hot-cutoff",
"Threshold at and below which a one-hot encoding is used for dynamic group scheduling",
ParseVal::Num(0),
PassOpt::parse_num,
),
PassOpt::new(
"duplicate-cutoff",
"Threshold above which the dynamic fsm register is replicated into a second, identical register",
ParseVal::Num(i64::MAX),
PassOpt::parse_num,
),
]
}
}
/// Helper function to emit profiling information when the control consists of a single group.
fn extract_single_enable(
con: &mut ir::Control,
component: Id,
) -> Option<SingleEnableInfo> {
if let ir::Control::Enable(enable) = con {
return Some(SingleEnableInfo {
component,
group: enable.group.borrow().name(),
});
} else {
None
}
}
impl Visitor for TopDownCompileControl {
fn start(
&mut self,
comp: &mut ir::Component,
_sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
let mut con = comp.control.borrow_mut();
if matches!(*con, ir::Control::Empty(..) | ir::Control::Enable(..)) {
if let Some(enable_info) =
extract_single_enable(&mut con, comp.name)
{
self.fsm_groups
.insert(ProfilingInfo::SingleEnable(enable_info));
}
return Ok(Action::Stop);
}
compute_unique_ids(&mut con, 0);
// IRPrinter::write_control(&con, 0, &mut std::io::stderr());
Ok(Action::Continue)
}
fn finish_seq(
&mut self,
s: &mut ir::Seq,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
// only compile using new fsm if has new_fsm attribute
if !s.attributes.has(ir::BoolAttr::NewFSM) {
return Ok(Action::Continue);
}
let mut builder = ir::Builder::new(comp, sigs);
let mut sch = Schedule::from(&mut builder);
sch.calculate_states_seq(s, self.early_transitions)?;
let fsm_impl = self.get_representation(&sch, &s.attributes);
// Compile schedule and return the group.
let seq_group =
sch.realize_schedule(self.dump_fsm, &mut self.fsm_groups, fsm_impl);
// Add NODE_ID to compiled group.
let mut en = ir::Control::enable(seq_group);
let node_id = s.attributes.get(NODE_ID).unwrap();
en.get_mut_attributes().insert(NODE_ID, node_id);
Ok(Action::change(en))
}
fn finish_if(
&mut self,
i: &mut ir::If,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
// only compile using new fsm if has new_fsm attribute
if !i.attributes.has(ir::BoolAttr::NewFSM) {
return Ok(Action::Continue);
}
let mut builder = ir::Builder::new(comp, sigs);
let mut sch = Schedule::from(&mut builder);
// Compile schedule and return the group.
sch.calculate_states_if(i, self.early_transitions)?;
let fsm_impl = self.get_representation(&sch, &i.attributes);
let if_group =
sch.realize_schedule(self.dump_fsm, &mut self.fsm_groups, fsm_impl);
// Add NODE_ID to compiled group.
let mut en = ir::Control::enable(if_group);
let node_id = i.attributes.get(NODE_ID).unwrap();
en.get_mut_attributes().insert(NODE_ID, node_id);
Ok(Action::change(en))
}
fn finish_while(
&mut self,
w: &mut ir::While,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
// only compile using new fsm if has attribute
if !w.attributes.has(ir::BoolAttr::NewFSM) {
return Ok(Action::Continue);
}
let mut builder = ir::Builder::new(comp, sigs);
let mut sch = Schedule::from(&mut builder);
sch.calculate_states_while(w, self.early_transitions)?;
let fsm_impl = self.get_representation(&sch, &w.attributes);
// Compile schedule and return the group.
let if_group =
sch.realize_schedule(self.dump_fsm, &mut self.fsm_groups, fsm_impl);
// Add NODE_ID to compiled group.
let mut en = ir::Control::enable(if_group);
let node_id = w.attributes.get(NODE_ID).unwrap();
en.get_mut_attributes().insert(NODE_ID, node_id);
Ok(Action::change(en))
}
/// Compile each child in `par` block separately so each child can make
/// progress indepdendently.
fn finish_par(
&mut self,
s: &mut ir::Par,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
let mut builder = ir::Builder::new(comp, sigs);
// Compilation group
let par_group = builder.add_group("par");
structure!(builder;
let signal_on = constant(1, 1);
let signal_off = constant(0, 1);
);
// Registers to save the done signal from each child.
let mut done_regs = Vec::with_capacity(s.stmts.len());
// For each child, build the enabling logic.
for con in &s.stmts {
let group = match con {
// Do not compile enables
ir::Control::Enable(ir::Enable { group, .. }) => {
self.fsm_groups.insert(ProfilingInfo::SingleEnable(
SingleEnableInfo {
group: group.borrow().name(),
component: builder.component.name,
},
));
Rc::clone(group)
}
// Compile complex schedule and return the group.
_ => {
let mut sch = Schedule::from(&mut builder);
sch.calculate_states(con, self.early_transitions)?;
let fsm_impl = self.get_representation(&sch, &s.attributes);
sch.realize_schedule(
self.dump_fsm,
&mut self.fsm_groups,
fsm_impl,
)
}
};
// Build circuitry to enable and disable this group.
structure!(builder;
let pd = prim std_reg(1);
);
let group_go = !(guard!(pd["out"] | group["done"]));
let group_done = guard!(group["done"]);
// Save the done condition in a register.
let assigns = build_assignments!(builder;
group["go"] = group_go ? signal_on["out"];
pd["in"] = group_done ? signal_on["out"];
pd["write_en"] = group_done ? signal_on["out"];
);
par_group.borrow_mut().assignments.extend(assigns);
done_regs.push(pd)
}
// Done condition for this group
let done_guard = done_regs
.clone()
.into_iter()
.map(|r| guard!(r["out"]))
.fold(ir::Guard::True, ir::Guard::and);
// CLEANUP: Reset the registers once the group is finished.
let mut cleanup = done_regs
.into_iter()
.flat_map(|r| {
build_assignments!(builder;
r["in"] = done_guard ? signal_off["out"];
r["write_en"] = done_guard ? signal_on["out"];
)
})
.collect::<Vec<_>>();
builder
.component
.continuous_assignments
.append(&mut cleanup);
// Done conditional for this group.
let done = builder.build_assignment(
par_group.borrow().get("done"),
signal_on.borrow().get("out"),
done_guard,
);
par_group.borrow_mut().assignments.push(done);
// Add NODE_ID to compiled group.
let mut en = ir::Control::enable(par_group);
let node_id = s.attributes.get(NODE_ID).unwrap();
en.get_mut_attributes().insert(NODE_ID, node_id);
Ok(Action::change(en))
}
fn finish(
&mut self,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
let control = Rc::clone(&comp.control);
let attrs = comp.attributes.clone();
let mut builder = ir::Builder::new(comp, sigs);
let mut sch = Schedule::from(&mut builder);
// Add assignments for the final states
sch.calculate_states(&control.borrow(), self.early_transitions)?;
let fsm_impl = self.get_representation(&sch, &attrs);
let comp_group =
sch.realize_schedule(self.dump_fsm, &mut self.fsm_groups, fsm_impl);
Ok(Action::change(ir::Control::enable(comp_group)))
}
/// If requested, emit FSM json after all components are processed
fn finish_context(&mut self, _ctx: &mut calyx_ir::Context) -> VisResult {
if let Some(json_out_file) = &mut self.dump_fsm_json {
let _ = serde_json::to_writer_pretty(
json_out_file.get_write(),
&self.fsm_groups,
);
}
Ok(Action::Continue)
}
}