calyx_opt/passes/static_promotion.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
use crate::analysis::{
CompactionAnalysis, InferenceAnalysis, PromotionAnalysis,
};
use crate::traversal::{
Action, ConstructVisitor, Named, Order, ParseVal, PassOpt, VisResult,
Visitor,
};
use calyx_ir::{self as ir, BoolAttr, LibrarySignatures};
use calyx_utils::CalyxResult;
use ir::GetAttributes;
use itertools::Itertools;
use std::num::NonZeroU64;
use std::rc::Rc;
const APPROX_ENABLE_SIZE: u64 = 1;
const APPROX_IF_SIZE: u64 = 3;
const APPROX_WHILE_REPEAT_SIZE: u64 = 3;
/// Promote control to static when (conservatively) possible, using @promote_static
/// annotations from `infer_static`.
///
/// Promotion occurs the following policies:
/// 1. ``Threshold'': How large the island must be. We have three const
/// defined as heuristics to measure approximately how big each control program
/// is. It must be larger than that threshold.
/// 2. ``Cycle limit": The maximum number of cycles the island can be when we
/// promote it.
/// 3. ``If Diff Limit": The maximum difference in latency between if statments
/// that we can tolerate to promote it.
///
pub struct StaticPromotion {
/// An InferenceAnalysis object so that we can re-infer the latencies of
/// certain components.
inference_analysis: InferenceAnalysis,
/// PromotionAnalysis object so that we can easily infer control, and keep
/// track of which groups were promoted.
promotion_analysis: PromotionAnalysis,
/// CompactionAnalysis object so that we can easily perform compaction
compaction_analysis: CompactionAnalysis,
/// Threshold for promotion
threshold: u64,
/// Threshold for difference in latency for if statements
if_diff_limit: Option<u64>,
/// Whether we should stop promoting when we see a loop.
cycle_limit: Option<u64>,
/// Whether to perform compaction. True by default
compaction: bool,
}
// Override constructor to build latency_data information from the primitives
// library.
impl ConstructVisitor for StaticPromotion {
fn from(ctx: &ir::Context) -> CalyxResult<Self> {
let opts = Self::get_opts(ctx);
Ok(StaticPromotion {
inference_analysis: InferenceAnalysis::from_ctx(ctx),
promotion_analysis: PromotionAnalysis::default(),
compaction_analysis: CompactionAnalysis::default(),
threshold: opts["threshold"].pos_num().unwrap(),
if_diff_limit: opts["if-diff-limit"].pos_num(),
cycle_limit: opts["cycle-limit"].pos_num(),
compaction: opts["compaction"].bool(),
})
}
// This pass shared information between components
fn clear_data(&mut self) {
self.promotion_analysis = PromotionAnalysis::default();
self.compaction_analysis = CompactionAnalysis::default();
}
}
impl Named for StaticPromotion {
fn name() -> &'static str {
"static-promotion"
}
fn description() -> &'static str {
"promote dynamic control programs to static when possible"
}
fn opts() -> Vec<PassOpt> {
vec![
PassOpt::new(
"threshold",
"minimum number of groups needed to promote a dynamic control program to static",
ParseVal::Num(1),
PassOpt::parse_num,
),
PassOpt::new(
"cycle-limit",
"maximum number of cycles to promote a dynamic control program to static",
ParseVal::Num(33554432),
PassOpt::parse_num,
),
PassOpt::new(
"if-diff-limit",
"the maximum difference between if branches that we tolerate for promotion",
ParseVal::Num(1),
PassOpt::parse_num,
),
PassOpt::new(
"compaction",
"Whether to perform compaction. True by Default ",
ParseVal::Bool(true),
PassOpt::parse_bool,
),
]
}
}
impl StaticPromotion {
// Remove @promotable(n) attribute if n is above the cycle limit, since
// we know we will never promote such a control.
// This can be helpful to the pass when applying the heuristics.
fn remove_large_promotables(&self, c: &mut ir::Control) {
if let Some(pr) = c.get_attribute(ir::NumAttr::Promotable) {
if !self.within_cycle_limit(pr) {
c.get_mut_attributes().remove(ir::NumAttr::Promotable)
}
}
}
fn within_cycle_limit(&self, latency: u64) -> bool {
if self.cycle_limit.is_none() {
return true;
}
latency < self.cycle_limit.unwrap()
}
fn within_if_diff_limit(&self, diff: u64) -> bool {
if self.if_diff_limit.is_none() {
return true;
}
diff <= self.if_diff_limit.unwrap()
}
fn fits_heuristics(&self, c: &ir::Control) -> bool {
let approx_size = Self::approx_size(c);
let latency = PromotionAnalysis::get_inferred_latency(c);
self.within_cycle_limit(latency) && approx_size > self.threshold
}
fn approx_size_static(sc: &ir::StaticControl, promoted: bool) -> u64 {
if !(sc.get_attributes().has(ir::BoolAttr::Promoted) || promoted) {
return APPROX_ENABLE_SIZE;
}
match sc {
ir::StaticControl::Empty(_) => 0,
ir::StaticControl::Enable(_) | ir::StaticControl::Invoke(_) => {
APPROX_ENABLE_SIZE
}
ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
Self::approx_size_static(body, true) + APPROX_WHILE_REPEAT_SIZE
}
ir::StaticControl::If(ir::StaticIf {
tbranch, fbranch, ..
}) => {
Self::approx_size_static(tbranch, true)
+ Self::approx_size_static(fbranch, true)
+ APPROX_IF_SIZE
}
ir::StaticControl::Par(ir::StaticPar { stmts, .. })
| ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => stmts
.iter()
.map(|stmt| Self::approx_size_static(stmt, true))
.sum(),
}
}
/// Calculates the approximate "size" of the control statements.
/// Tries to approximate the number of dynamic FSM transitions that will occur
fn approx_size(c: &ir::Control) -> u64 {
match c {
ir::Control::Empty(_) => 0,
ir::Control::Enable(_) | ir::Control::Invoke(_) => {
APPROX_ENABLE_SIZE
}
ir::Control::Seq(ir::Seq { stmts, .. })
| ir::Control::Par(ir::Par { stmts, .. }) => {
stmts.iter().map(Self::approx_size).sum()
}
ir::Control::Repeat(ir::Repeat { body, .. })
| ir::Control::While(ir::While { body, .. }) => {
Self::approx_size(body) + APPROX_WHILE_REPEAT_SIZE
}
ir::Control::If(ir::If {
tbranch, fbranch, ..
}) => {
Self::approx_size(tbranch)
+ Self::approx_size(fbranch)
+ APPROX_IF_SIZE
}
ir::Control::Static(sc) => Self::approx_size_static(sc, false),
}
}
/// Uses `approx_size` function to sum the sizes of the control statements
/// in the given vector
fn approx_control_vec_size(v: &[ir::Control]) -> u64 {
v.iter().map(Self::approx_size).sum()
}
fn promote_seq_heuristic(
&mut self,
builder: &mut ir::Builder,
mut control_vec: Vec<ir::Control>,
) -> Vec<ir::Control> {
if control_vec.is_empty() {
// Base case len == 0
vec![]
} else if control_vec.len() == 1 {
// Base case len == 1.
// Promote if it fits the promotion heuristics.
let mut stmt = control_vec.pop().unwrap();
if self.fits_heuristics(&stmt) {
vec![ir::Control::Static(
self.promotion_analysis
.convert_to_static(&mut stmt, builder),
)]
} else {
vec![stmt]
}
} else {
let mut possibly_compacted_ctrl = if self.compaction {
// If compaction is turned on, then we possibly compact
self.compaction_analysis.compact_control_vec(
control_vec,
&mut self.promotion_analysis,
builder,
)
} else {
// Otherwise it's just the og control vec
control_vec
};
// If length == 1 this means we have a vec[compacted_static_par],
// so we can return.
// (Note that the og control_vec must be of length >=2, since we
// have already checked for two base cases.)
if possibly_compacted_ctrl.len() == 1 {
return possibly_compacted_ctrl;
}
// Otherwise we cannot compact at all,
// so go through normal promotion heuristic analysis.
if Self::approx_control_vec_size(&possibly_compacted_ctrl)
<= self.threshold
{
// Too small to be promoted, return as is
return possibly_compacted_ctrl;
} else if !self.within_cycle_limit(
possibly_compacted_ctrl
.iter()
.map(PromotionAnalysis::get_inferred_latency)
.sum(),
) {
// Too large, try to break up
let right = possibly_compacted_ctrl
.split_off(possibly_compacted_ctrl.len() / 2);
let mut left_res = self
.promote_seq_heuristic(builder, possibly_compacted_ctrl);
let right_res = self.promote_seq_heuristic(builder, right);
left_res.extend(right_res);
return left_res;
}
// Correct size, convert the entire vec
let s_seq_stmts = self
.promotion_analysis
.convert_vec_to_static(builder, possibly_compacted_ctrl);
let latency = s_seq_stmts.iter().map(|sc| sc.get_latency()).sum();
let sseq = ir::Control::Static(ir::StaticControl::seq(
s_seq_stmts,
latency,
));
vec![sseq]
}
}
/// First checks if the vec of control statements meets the self.threshold
/// and is within self.cycle_limit
/// If so, converts vec of control to a static par, and returns a vec containing
/// the static par.
/// Otherwise, just returns the vec without changing it.
fn promote_vec_par_heuristic(
&mut self,
builder: &mut ir::Builder,
mut control_vec: Vec<ir::Control>,
) -> Vec<ir::Control> {
if control_vec.is_empty() {
// Base case
return vec![];
} else if control_vec.len() == 1 {
return vec![control_vec.pop().unwrap()];
} else if Self::approx_control_vec_size(&control_vec) <= self.threshold
{
// Too small to be promoted, return as is
return control_vec;
} else if !self.within_cycle_limit(
control_vec
.iter()
.map(PromotionAnalysis::get_inferred_latency)
.max()
.unwrap_or_else(|| unreachable!("Empty Par Block")),
) {
// Too large to be promoted, take out largest thread and try to promote rest.
// Can safely unwrap bc we already checked for an empty vector.
let (index, _) = control_vec
.iter()
.enumerate()
.max_by_key(|&(_, c)| Self::approx_size(c))
.unwrap();
// Pop the largest element from the vector
let largest_thread = control_vec.remove(index);
let mut left = self.promote_vec_par_heuristic(builder, control_vec);
left.push(largest_thread);
return left;
}
// Convert vec to static par
let s_par_stmts = self
.promotion_analysis
.convert_vec_to_static(builder, control_vec);
let latency = s_par_stmts
.iter()
.map(|sc| sc.get_latency())
.max()
.unwrap_or_else(|| unreachable!("empty par block"));
let spar =
ir::Control::Static(ir::StaticControl::par(s_par_stmts, latency));
vec![spar]
}
}
impl Visitor for StaticPromotion {
// Require post order traversal of components to ensure `invoke` nodes
// get timing information for components.
fn iteration_order() -> Order {
Order::Post
}
fn finish(
&mut self,
comp: &mut ir::Component,
_lib: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
if comp.name != "main" {
let comp_sig = comp.signature.borrow();
if comp.control.borrow().is_static() {
// We ended up promoting it
if !comp.is_static() {
// Need this attribute for a weird, in-between state.
// It has a known latency but also produces a done signal.
comp.attributes.insert(ir::BoolAttr::Promoted, 1);
}
// (Possibly) new latency because of compaction
let new_latency = NonZeroU64::new(
comp.control.borrow().get_latency().unwrap(),
)
.unwrap();
// This makes the component appear as a static<n> component.
comp.latency = Some(new_latency);
// Adjust inference analysis to account for this new latency.
self.inference_analysis
.adjust_component((comp.name, new_latency.into()));
} else if !comp.control.borrow().is_empty() {
// This is for the case where we didn't end up promoting, so
// we remove it from our inference_analysis.
// Note that sometimes you can have components with only continuous
// assignments with @interval annotations: in that case,
// we don't want to remove our inference analysis.
self.inference_analysis.remove_component(comp.name);
};
let go_ports =
comp_sig.find_all_with_attr(ir::NumAttr::Go).collect_vec();
// Either we have upgraded component to static<n> or we have decided
// not to promote component at all. Either way, we can remove the
// @promotable attribute.
for go_port in go_ports {
go_port
.borrow_mut()
.attributes
.remove(ir::NumAttr::Promotable);
}
}
// Remove @promotable attribute from control.
// Probably not necessary, since we'll ignore it anyways, but makes for
// cleaner code.
InferenceAnalysis::remove_promotable_attribute(
&mut comp.control.borrow_mut(),
);
Ok(Action::Continue)
}
fn start(
&mut self,
comp: &mut ir::Component,
_sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
// Re-infer static timing based on the components we have updated in
// this pass.
self.inference_analysis.fixup_timing(comp);
// Update the continuous reads and writes
self.compaction_analysis.update_cont_read_writes(comp);
Ok(Action::Continue)
}
fn enable(
&mut self,
s: &mut ir::Enable,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
let mut builder = ir::Builder::new(comp, sigs);
if let Some(latency) = s.attributes.get(ir::NumAttr::Promotable) {
// Convert to static if enable is
// within cycle limit and size is above threshold.
if self.within_cycle_limit(latency)
&& (APPROX_ENABLE_SIZE > self.threshold)
{
return Ok(Action::change(ir::Control::Static(
self.promotion_analysis
.convert_enable_to_static(s, &mut builder),
)));
}
}
Ok(Action::Continue)
}
fn invoke(
&mut self,
s: &mut ir::Invoke,
_comp: &mut ir::Component,
_sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
if let Some(latency) = s.attributes.get(ir::NumAttr::Promotable) {
// Convert to static if within cycle limit and size is above threshold.
if self.within_cycle_limit(latency)
&& (APPROX_ENABLE_SIZE > self.threshold)
{
return Ok(Action::change(ir::Control::Static(
self.promotion_analysis.convert_invoke_to_static(s),
)));
}
}
Ok(Action::Continue)
}
fn finish_seq(
&mut self,
s: &mut ir::Seq,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
self.inference_analysis.fixup_seq(s);
// Remove @promotable attributes that are too large to be promoted.
// This helps the promotion heuristic make smarter decisions
s.stmts
.iter_mut()
.for_each(|c| self.remove_large_promotables(c));
let mut builder = ir::Builder::new(comp, sigs);
let old_stmts = std::mem::take(&mut s.stmts);
let mut new_stmts: Vec<ir::Control> = Vec::new();
let mut cur_vec: Vec<ir::Control> = Vec::new();
for stmt in old_stmts {
if PromotionAnalysis::can_be_promoted(&stmt) {
cur_vec.push(stmt);
} else {
// Use heuristics to decide how to promote this cur_vec of promotable stmts.
let possibly_promoted_stmts =
self.promote_seq_heuristic(&mut builder, cur_vec);
new_stmts.extend(possibly_promoted_stmts);
// Add the current (non-promotable) stmt
new_stmts.push(stmt);
// New cur_vec
cur_vec = Vec::new();
}
}
new_stmts.extend(self.promote_seq_heuristic(&mut builder, cur_vec));
let mut new_ctrl = if new_stmts.len() == 1 {
new_stmts.pop().unwrap()
} else {
ir::Control::Seq(ir::Seq {
stmts: new_stmts,
attributes: ir::Attributes::default(),
})
};
self.inference_analysis.fixup_ctrl(&mut new_ctrl);
// this might be part of a larger issue where passes remove some attributes they shouldn't
if s.get_attributes().has(BoolAttr::Fast) {
new_ctrl.get_mut_attributes().insert(BoolAttr::Fast, 1);
}
Ok(Action::change(new_ctrl))
}
fn finish_par(
&mut self,
s: &mut ir::Par,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
self.inference_analysis.fixup_par(s);
let mut builder = ir::Builder::new(comp, sigs);
// Check if entire par is promotable
if let Some(latency) = s.attributes.get(ir::NumAttr::Promotable) {
let approx_size: u64 = s.stmts.iter().map(Self::approx_size).sum();
if approx_size <= self.threshold {
// Par is too small to promote, continue.
return Ok(Action::Continue);
} else if self.within_cycle_limit(latency) {
// Promote entire par
let spar = ir::Control::Static(ir::StaticControl::par(
self.promotion_analysis.convert_vec_to_static(
&mut builder,
std::mem::take(&mut s.stmts),
),
latency,
));
return Ok(Action::change(spar));
}
}
let mut new_stmts: Vec<ir::Control> = Vec::new();
// The par either a) takes too many cylces to promote entirely or
// b) has dynamic stmts in it. Either way, the solution is to
// break it up.
// Split the par into static and dynamic stmts, and use heuristics
// to choose whether to promote the static ones. This replacement will
// not have a `@promotable` attribute.
// This temporarily messes up its parents' `@promotable`
// attribute, but this is fine since we know its parent will never try
// to promote it.
let (s_stmts, d_stmts): (Vec<ir::Control>, Vec<ir::Control>) = s
.stmts
.drain(..)
.partition(PromotionAnalysis::can_be_promoted);
new_stmts.extend(self.promote_vec_par_heuristic(&mut builder, s_stmts));
new_stmts.extend(d_stmts);
let new_par = ir::Control::Par(ir::Par {
stmts: new_stmts,
attributes: ir::Attributes::default(),
});
Ok(Action::change(new_par))
}
fn finish_if(
&mut self,
s: &mut ir::If,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
self.inference_analysis.fixup_if(s);
let mut builder = ir::Builder::new(comp, sigs);
if let Some(latency) = s.attributes.get(ir::NumAttr::Promotable) {
let approx_size_if = Self::approx_size(&s.tbranch)
+ Self::approx_size(&s.fbranch)
+ APPROX_IF_SIZE;
let branch_diff = PromotionAnalysis::get_inferred_latency(
&s.tbranch,
)
.abs_diff(PromotionAnalysis::get_inferred_latency(&s.fbranch));
if approx_size_if > self.threshold
&& self.within_cycle_limit(latency)
&& self.within_if_diff_limit(branch_diff)
{
// Meets size threshold so promote to static
let static_tbranch = self
.promotion_analysis
.convert_to_static(&mut s.tbranch, &mut builder);
let static_fbranch = self
.promotion_analysis
.convert_to_static(&mut s.fbranch, &mut builder);
return Ok(Action::change(ir::Control::Static(
ir::StaticControl::static_if(
Rc::clone(&s.port),
Box::new(static_tbranch),
Box::new(static_fbranch),
latency,
),
)));
}
// If this takes too many cycles, then we will
// never promote this if statement, meaning we will never promote any
// of its parents. We can therefore safely remove the `@promotable` attribute.
// This isn't strictly necessary, but it is helpful for parent control
// programs applying heuristics.
if !(self.within_cycle_limit(latency)) {
s.attributes.remove(ir::NumAttr::Promotable);
}
}
Ok(Action::Continue)
}
// upgrades @bound while loops to static repeats
fn finish_while(
&mut self,
s: &mut ir::While,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
self.inference_analysis.fixup_while(s);
let mut builder = ir::Builder::new(comp, sigs);
// First check that while loop is promotable
if let Some(latency) = s.attributes.get(ir::NumAttr::Promotable) {
let approx_size =
Self::approx_size(&s.body) + APPROX_WHILE_REPEAT_SIZE;
// Then check that it fits the heuristics
if approx_size > self.threshold && self.within_cycle_limit(latency)
{
// Turn repeat into static repeat
let sc = self
.promotion_analysis
.convert_to_static(&mut s.body, &mut builder);
let static_repeat = ir::StaticControl::repeat(
s.attributes.get(ir::NumAttr::Bound).unwrap_or_else(|| {
unreachable!(
"Unbounded loop has has @promotable attribute"
)
}),
latency,
Box::new(sc),
);
return Ok(Action::Change(Box::new(ir::Control::Static(
static_repeat,
))));
}
// If this takes too many cycles, then we will
// never promote this if statement, meaning we will never promote any
// of its parents. We can therefore safely remove the `@promotable` attribute.
// This isn't strictly necessary, but it is helpful for parent control
// programs applying heuristics.
if !(self.within_cycle_limit(latency)) {
s.attributes.remove(ir::NumAttr::Promotable);
}
}
Ok(Action::Continue)
}
// upgrades repeats with static bodies to static repeats
fn finish_repeat(
&mut self,
s: &mut ir::Repeat,
comp: &mut ir::Component,
sigs: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
self.inference_analysis.fixup_repeat(s);
let mut builder = ir::Builder::new(comp, sigs);
if let Some(latency) = s.attributes.get(ir::NumAttr::Promotable) {
let approx_size =
Self::approx_size(&s.body) + APPROX_WHILE_REPEAT_SIZE;
if approx_size > self.threshold && self.within_cycle_limit(latency)
{
// Meets size threshold, so turn repeat into static repeat
let sc = self
.promotion_analysis
.convert_to_static(&mut s.body, &mut builder);
let static_repeat = ir::StaticControl::repeat(
s.num_repeats,
latency,
Box::new(sc),
);
return Ok(Action::Change(Box::new(ir::Control::Static(
static_repeat,
))));
}
// If this takes too many cycles, then we will
// never promote this if statement, meaning we will never promote any
// of its parents. We can therefore safely remove the `@promotable` attribute.
// This isn't strictly necessary, but it is helpful for parent control
// programs applying heuristics.
if !(self.within_cycle_limit(latency)) {
s.attributes.remove(ir::NumAttr::Promotable);
}
}
Ok(Action::Continue)
}
}