calyx_opt/passes/
static_inliner.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
use crate::analysis::GraphColoring;
use crate::traversal::{
    Action, ConstructVisitor, Named, ParseVal, PassOpt, VisResult, Visitor,
};
use calyx_ir::LibrarySignatures;
use calyx_ir::structure;
use calyx_ir::{self as ir, StaticTiming};
use calyx_utils::CalyxResult;
use ir::build_assignments;
use itertools::Itertools;
use std::collections::{BTreeMap, HashMap};
use std::rc::Rc;

pub struct StaticInliner {
    offload_pause: bool,
}

impl Named for StaticInliner {
    fn name() -> &'static str {
        "static-inline"
    }

    fn description() -> &'static str {
        "Compiles Static Control into a single Static Enable"
    }

    fn opts() -> Vec<PassOpt> {
        vec![PassOpt::new(
            "offload-pause",
            "Whether to pause the static FSM when offloading. Note that this
            parameter must be in sync with the static-inliner's offload-pause
            parameter for compilation to work correctly",
            ParseVal::Bool(true),
            PassOpt::parse_bool,
        )]
    }
}

impl ConstructVisitor for StaticInliner {
    fn from(ctx: &ir::Context) -> CalyxResult<Self> {
        let opts = Self::get_opts(ctx);

        Ok(StaticInliner {
            offload_pause: opts["offload-pause"].bool(),
        })
    }

    fn clear_data(&mut self) {}
}

impl StaticInliner {
    // updates single assignment in the same way `update_assignments_timing` does
    // adds offset to each timing guard in `assigns`
    // e.g., %[2,3] with offset = 2 -> %[4,5]
    // all guards also must update so that guard -> guard & %[offset, offset+latency] since that
    // is when the group will be active in the control, i.e., dst = guard ? src
    // becomes dst = guard & %[offset, offset+latency] ? src
    fn update_assignment_timing(
        assign: &mut ir::Assignment<ir::StaticTiming>,
        offset: u64,
        latency: u64,
    ) {
        // adding the offset to each timing interval
        assign.for_each_interval(|timing_interval| {
            let (beg, end) = timing_interval.get_interval();
            Some(ir::Guard::Info(ir::StaticTiming::new((
                beg + offset,
                end + offset,
            ))))
        });
        // adding the interval %[offset, offset + latency]
        assign
            .guard
            .add_interval(ir::StaticTiming::new((offset, offset + latency)));
    }

    // calls update_assignment_timing on each assignment in assigns, which does the following:
    // adds offset to each timing guard in `assigns`
    // e.g., %[2,3] with offset = 2 -> %[4,5]
    // all guards also must update so that guard -> guard & %[offset, offset+latency] since that
    // is when the group will be active in the control, i.e., dst = guard ? src
    // becomes dst =  guard & %[offset, offset+latency] ? src
    // total_latency is the latency of the entire control block being inlined.
    fn update_assignments_timing(
        assigns: &mut Vec<ir::Assignment<ir::StaticTiming>>,
        offset: u64,
        latency: u64,
        total_latency: u64,
    ) {
        if offset == 0 && latency == total_latency {
            // In this special case, we do nothing, since the timing guards
            // would be redundant.
            return;
        }
        for assign in assigns {
            Self::update_assignment_timing(assign, offset, latency);
        }
    }

    // Makes assignments such that if branches can start executing on the first
    // possible cycle.
    // essentially, on the first cycle, we write port's value into a `cond` = a register.
    // this is because the tru/false branch might alter port's value when it executes
    // cond_wire reads from port on the first cycle, and then cond for the other cycles.
    // this means that all of the tru branch assigns can get the cond_wire ? in front of them,
    // and all false branch assigns can get !cond_wire ? in front of them
    // makes the following assignments:
    // read more here: https://github.com/calyxir/calyx/issues/1344 (specifically
    // the section "Conditionl")
    fn make_cond_assigns(
        cond: ir::RRC<ir::Cell>,
        cond_wire: ir::RRC<ir::Cell>,
        port: ir::RRC<ir::Port>,
        latency: u64,
        builder: &mut ir::Builder,
    ) -> Vec<ir::Assignment<ir::StaticTiming>> {
        structure!( builder;
            let signal_on = constant(1,1);
        );
        let mut cond_assigns = vec![];
        let cycle_0_guard = ir::Guard::Info(ir::StaticTiming::new((0, 1)));
        // = %[1:latency] ?
        let other_cycles_guard =
            ir::Guard::Info(ir::StaticTiming::new((1, latency)));
        // cond.in = port
        let cond_gets_port = builder.build_assignment(
            cond.borrow().get("in"),
            Rc::clone(&port),
            ir::Guard::True,
        );
        // cond_wire.in = %0 ? port
        let cond_wire_gets_port = builder.build_assignment(
            cond_wire.borrow().get("in"),
            port,
            cycle_0_guard.clone(),
        );
        cond_assigns.push(cond_gets_port);
        cond_assigns.push(cond_wire_gets_port);
        let asgns = build_assignments!(builder;
            // cond.write_en = %0 ? 1'd1 (since we also have cond.in = %0 ? port)
            // cond_wire.in = %[1:latency] ? cond.out (since we also have cond_wire.in = %0 ? port)
            cond["write_en"] = cycle_0_guard ? signal_on["out"];
            cond_wire["in"] = other_cycles_guard ? cond["out"];
        );
        cond_assigns.extend(asgns.to_vec());
        cond_assigns
    }

    // Given a static control block `sc`, and the current latency returns a
    // vec of tuples (i,j) which represents all of the intervals (relative to
    // the current latency) for which the corresponding fsm will be offloading.
    // There are two scenarios in the fsm will be offloading:
    //   1) All static repeat bodies.
    //   2) If there is a static par in which different threads have overlapping
    //      offloads, then we offload the entire static par.
    fn get_offload_latencies(
        sc: &ir::StaticControl,
        cur_latency: u64,
    ) -> Vec<(u64, u64)> {
        match sc {
            ir::StaticControl::Enable(_) | ir::StaticControl::Empty(_) => {
                vec![]
            }
            ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => {
                let mut lat = cur_latency;
                let mut res = vec![];
                for stmt in stmts {
                    res.extend(Self::get_offload_latencies(stmt, lat));
                    lat += stmt.get_latency();
                }
                res
            }
            ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
                let mut res = vec![];
                // If the current static par has overlapping offload intervals,
                // then push the entire par.
                if Self::have_overlapping_offloads(sc) {
                    res.push((cur_latency, cur_latency + sc.get_latency()))
                } else {
                    // Othwerwise just recursively look into each statement
                    // for possible offloads.
                    for stmt in stmts {
                        res.extend(Self::get_offload_latencies(
                            stmt,
                            cur_latency,
                        ));
                    }
                }
                res
            }
            ir::StaticControl::If(ir::StaticIf {
                tbranch, fbranch, ..
            }) => {
                let mut res = Self::get_offload_latencies(tbranch, cur_latency);
                res.extend(Self::get_offload_latencies(fbranch, cur_latency));
                res
            }
            ir::StaticControl::Repeat(ir::StaticRepeat {
                num_repeats,
                body,
                ..
            }) => {
                let res = vec![(
                    cur_latency,
                    cur_latency + num_repeats * body.get_latency(),
                )];
                res
            }
            ir::StaticControl::Invoke(inv) => {
                dbg!(inv.comp.borrow().name());
                todo!("implement static inlining for invokes")
            }
        }
    }

    // Checks whether a given static control block `sc` contains a static
    // par in which different threads have overlapping offload intervals.
    // Note that this only checks one layer of nesting once it finds a static par.
    // So if you want to check a deeper layer of nesting you have to call this
    // function again on the nested static par.
    fn have_overlapping_offloads(sc: &ir::StaticControl) -> bool {
        match sc {
            ir::StaticControl::Enable(_) | ir::StaticControl::Empty(_) => false,
            ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => {
                stmts.iter().any(Self::have_overlapping_offloads)
            }
            ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
                // For each thread, add vec of offload intervals to the vec.
                // So we have a vec of (vec of tuples/intervals)
                let intervals: Vec<_> = stmts
                    .iter()
                    .map(|stmt| Self::get_offload_latencies(stmt, 0))
                    .collect();
                for (intervals1, intervals2) in
                    intervals.iter().tuple_combinations()
                {
                    for &(start1, end1) in intervals1.iter() {
                        for &(start2, end2) in intervals2.iter() {
                            // Overlap if either: interval1 a) starts within
                            // interval2, b) ends within interval2, or c)
                            // encompasses interval2 entirely.
                            if (start2 <= end1 && end1 <= end2)
                                || (start2 <= start1 && start1 <= end2)
                                || (start1 <= start2 && end2 <= start2)
                            {
                                return true;
                            }
                        }
                    }
                }
                false
                // We don't have to check this
                // stmts.iter().any(|stmt| Self::have_overlapping_repeats(stmt))
                // because we will check this later on.
            }
            ir::StaticControl::If(ir::StaticIf {
                tbranch, fbranch, ..
            }) => {
                Self::have_overlapping_offloads(tbranch)
                    || Self::have_overlapping_offloads(fbranch)
            }
            ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
                Self::have_overlapping_offloads(body)
            }
            ir::StaticControl::Invoke(inv) => {
                dbg!(inv.comp.borrow().name());
                todo!("implement static inlining for invokes")
            }
        }
    }

    // Increases the latency of static group `sg` to `new_lat`.
    // `new_lat` must be longer than the existing latency.
    // Useful to make `static par` threads all have the same latency.
    fn increase_sgroup_latency(sg: ir::RRC<ir::StaticGroup>, new_lat: u64) {
        assert!(
            new_lat >= sg.borrow().get_latency(),
            "New latency must be bigger than existing latency"
        );
        sg.borrow_mut().latency = new_lat;
        sg.borrow_mut().assignments.iter_mut().for_each(|asssign| {
            asssign.guard.add_interval(StaticTiming::new((0, new_lat)))
        });
    }

    fn get_coloring(par_stmts: &[ir::StaticControl]) -> HashMap<usize, usize> {
        let mut conflict_graph: GraphColoring<usize> =
            GraphColoring::from(0..par_stmts.len());
        // Getting the offload intervals for each thread.
        let offload_interval_info = par_stmts
            .iter()
            .map(|stmt| Self::get_offload_latencies(stmt, 0))
            .collect_vec();
        // Build conflict graph, where each thread is represented
        // by its index in `stmts`
        for (i, j) in (0..par_stmts.len()).tuple_combinations() {
            let intervals1 = &offload_interval_info[i];
            let intervals2 = &offload_interval_info[j];
            for &(start1, end1) in intervals1.iter() {
                for &(start2, end2) in intervals2.iter() {
                    if (start2 <= end1 && end1 <= end2)
                        || (start2 <= start1 && start1 <= end2)
                        || (start1 <= start2 && end2 <= end1)
                    {
                        // If intervals overlap then insert conflict.
                        conflict_graph.insert_conflict(&i, &j);
                    }
                }
            }
        }

        conflict_graph.color_greedy(None, true)
    }

    // inlines the static control `sc` and returns an equivalent single static group
    fn inline_static_control(
        &self,
        sc: &ir::StaticControl,
        builder: &mut ir::Builder,
    ) -> ir::RRC<ir::StaticGroup> {
        match sc {
            ir::StaticControl::Enable(ir::StaticEnable { group, .. }) => {
                Rc::clone(group)
            }
            ir::StaticControl::Seq(ir::StaticSeq {
                stmts,
                latency,
                attributes,
            }) => {
                let seq_group =
                    builder.add_static_group("static_seq", *latency);
                let mut seq_group_assigns: Vec<
                    ir::Assignment<ir::StaticTiming>,
                > = vec![];
                let mut cur_offset = 0;
                for stmt in stmts {
                    let stmt_latency = stmt.get_latency();
                    // first recursively call each stmt in seq, and turn each stmt
                    // into static group g.
                    let g = self.inline_static_control(stmt, builder);
                    assert!(
                        g.borrow().get_latency() == stmt_latency,
                        "static group latency doesn't match static stmt latency"
                    );
                    // get the assignments from g
                    // currently we clone, since we might need these assignments elsewhere
                    // We could probably do some sort of analysis to see when we need to
                    // clone vs. can drain
                    let mut g_assigns: Vec<ir::Assignment<ir::StaticTiming>> =
                        g.borrow_mut().assignments.clone();
                    // add cur_offset to each static guard in g_assigns
                    // and add %[offset, offset + latency] to each assignment in
                    // g_assigns
                    StaticInliner::update_assignments_timing(
                        &mut g_assigns,
                        cur_offset,
                        stmt_latency,
                        *latency,
                    );
                    // add g_assigns to seq_group_assigns
                    seq_group_assigns.extend(g_assigns.into_iter());
                    // updates cur_offset so that next stmt gets its static timing
                    // offset appropriately
                    cur_offset += stmt_latency;
                }
                assert!(
                    *latency == cur_offset,
                    "static group latency doesn't match static seq latency"
                );
                seq_group.borrow_mut().assignments = seq_group_assigns;
                seq_group.borrow_mut().attributes = attributes.clone();
                seq_group
            }
            ir::StaticControl::Par(ir::StaticPar {
                stmts,
                latency,
                attributes,
            }) => {
                if !self.offload_pause {
                    // If we don't pause on offload, we can just do things
                    // conventionally, similar to static seq.
                    let par_group =
                        builder.add_static_group("static_par", *latency);
                    let mut par_group_assigns: Vec<
                        ir::Assignment<ir::StaticTiming>,
                    > = vec![];
                    for stmt in stmts {
                        let stmt_latency = stmt.get_latency();
                        // first recursively call each stmt in par, and turn each stmt
                        // into static group g.
                        let g = self.inline_static_control(stmt, builder);
                        assert!(
                            g.borrow().get_latency() == stmt_latency,
                            "static group latency doesn't match static stmt latency"
                        );
                        // get the assignments from g
                        let mut g_assigns: Vec<
                            ir::Assignment<ir::StaticTiming>,
                        > = g.borrow_mut().assignments.clone();
                        // and add %[0, group_latency] to each assignment in g_assigns
                        StaticInliner::update_assignments_timing(
                            &mut g_assigns,
                            0,
                            stmt_latency,
                            *latency,
                        );
                        // add g_assigns to par_group_assigns
                        par_group_assigns.extend(g_assigns.into_iter());
                    }
                    par_group.borrow_mut().assignments = par_group_assigns;
                    par_group.borrow_mut().attributes = attributes.clone();
                    par_group
                } else {
                    // We build a conflict graph to figure out which
                    // `static par` threads can share an FSM (they can do so
                    // so long as they never offload at the same time).
                    // To do this we perform a greedy coloring, where nodes=threads
                    // and threads are represented by their index in `stmts`.
                    let threads_to_colors = Self::get_coloring(stmts);
                    let colors_to_threads =
                        GraphColoring::reverse_coloring(&threads_to_colors);
                    // Need to know the latency of each color (i.e., the
                    // maximum latency among all threads of that color.)
                    let colors_to_latencies: BTreeMap<usize, u64> =
                        colors_to_threads
                            .into_iter()
                            .map(|(color, threads)| {
                                (
                                    color,
                                    threads
                                        .iter()
                                        .map(|thread| {
                                            stmts
                                                .get(*thread)
                                                .expect("coloring shouldn't produce unkown threads")
                                                .get_latency()
                                        })
                                        .max()
                                        .expect("par.stmts shouldn't be empty"),
                                )
                            })
                            .collect();

                    // `thread_assigns` maps colors to the assignments corresponding to the
                    // color (i.e., the assignments corresponding to the color's
                    // group of threads.)
                    let mut color_assigns: BTreeMap<
                        usize,
                        Vec<ir::Assignment<ir::StaticTiming>>,
                    > = BTreeMap::new();
                    // iterate through stmts to build `color_assigns`.
                    for (index, stmt) in stmts.iter().enumerate() {
                        // color_latency should be >= stmt_latency
                        // (color_latency is max of all threads of the color).
                        let stmt_latency = stmt.get_latency();
                        let color_latency = *colors_to_latencies
                            .get(&threads_to_colors[&index])
                            .expect("coloring has gone wrong somehow");

                        // recursively turn each stmt in the par block into a group g
                        // and take its assignments.
                        let stmt_group =
                            self.inline_static_control(stmt, builder);
                        assert!(
                            stmt_group.borrow().get_latency() == stmt_latency,
                            "static group latency doesn't match static stmt latency"
                        );
                        let mut group_assigns =
                            stmt_group.borrow().assignments.clone();

                        // If we are combining threads with uneven latencies, then
                        // for the smaller threads we have to add an implicit guard from
                        // %[0:smaller latency].
                        if stmt_latency < color_latency {
                            group_assigns.iter_mut().for_each(|assign| {
                                assign.guard.add_interval(StaticTiming::new((
                                    0,
                                    stmt_latency,
                                )))
                            })
                        }

                        color_assigns
                            .entry(*threads_to_colors.get(&index).unwrap())
                            .or_default()
                            .extend(group_assigns);
                    }

                    // Now turn `color_assigns` into `groups` (each color gets
                    // one group).
                    let mut color_groups = color_assigns
                        .into_iter()
                        .map(|(index, assigns)| {
                            let thread_group = builder.add_static_group(
                            "static_par_thread",
                            *colors_to_latencies.get(&index).expect("something has gone wrong merging par threads"));
                            thread_group.borrow_mut().assignments = assigns;
                            thread_group
                        })
                        .collect_vec();

                    if color_groups.len() == 1 {
                        // If we only have one group, no need for a wrapper.
                        let par_group = color_groups.pop().unwrap();
                        par_group.borrow_mut().attributes = attributes.clone();
                        par_group
                    } else {
                        // We need a wrapper to fire off each thread independently.
                        let par_group =
                            builder.add_static_group("static_par", *latency);
                        let mut par_group_assigns: Vec<
                            ir::Assignment<ir::StaticTiming>,
                        > = vec![];
                        for group in color_groups {
                            // If color_latency < latency we need to add guard
                            // color_group[go] = %[0:color_latency] ? 1'd1;
                            // However, if color_latency will take the same
                            // number of bits as latency, then we might as
                            // well just increase the latency of the group to
                            // avoid making this guard.
                            // XXX(Caleb): we don't know whether this will be
                            // one-hot or binary... should encode some way to
                            // do this.
                            if group.borrow().latency + 1 == *latency
                                || group.borrow().latency + 2 == *latency
                            {
                                Self::increase_sgroup_latency(
                                    Rc::clone(&group),
                                    *latency,
                                );
                            }

                            structure!( builder;
                                let signal_on = constant(1,1);
                            );

                            // Making assignment:
                            // color_group[go] = %[0:color_latency] ? 1'd1;
                            let stmt_guard =
                                if group.borrow().latency == *latency {
                                    ir::Guard::True
                                } else {
                                    ir::Guard::Info(ir::StaticTiming::new((
                                        0,
                                        group.borrow().get_latency(),
                                    )))
                                };

                            let trigger_body = build_assignments!(builder;
                                group["go"] = stmt_guard ? signal_on["out"];
                            );
                            par_group_assigns.extend(trigger_body);
                        }

                        par_group.borrow_mut().assignments = par_group_assigns;
                        par_group.borrow_mut().attributes = attributes.clone();
                        par_group
                            .borrow_mut()
                            .attributes
                            .insert(ir::BoolAttr::ParCtrl, 1);

                        // Building a wrapper that just simply executes `par_group`.
                        // This group could get thrown away, but thats fine, because
                        // we've guaranteed that `par_group` will never get thrown
                        // out.
                        let par_wrapper = builder
                            .add_static_group("static_par_wrapper", *latency);
                        structure!( builder;
                            let signal_on = constant(1,1);
                        );
                        let trigger_body = build_assignments!(builder;
                            par_group["go"] = ? signal_on["out"];
                        );
                        // par_wrapper triggers par_group[go]
                        par_wrapper
                            .borrow_mut()
                            .assignments
                            .extend(trigger_body);
                        par_wrapper
                    }
                }
            }
            ir::StaticControl::If(ir::StaticIf {
                port,
                tbranch,
                fbranch,
                latency,
                attributes,
            }) => {
                // Making sure max of the two branches latency is the latency
                // of the if statement
                let tbranch_latency = tbranch.get_latency();
                let fbranch_latency = fbranch.get_latency();
                let max_latency =
                    std::cmp::max(tbranch_latency, fbranch_latency);
                assert_eq!(
                    max_latency, *latency,
                    "if group latency and max of the if branch latencies do not match"
                );

                // Inline assignments in tbranch and fbranch, and get resulting
                // tgroup_assigns and fgroup_assigns
                let tgroup = self.inline_static_control(tbranch, builder);
                let mut tgroup_assigns: Vec<ir::Assignment<ir::StaticTiming>> =
                    tgroup.borrow_mut().assignments.clone();
                assert_eq!(
                    tbranch_latency,
                    tgroup.borrow().get_latency(),
                    "tru branch and tru branch group latency do not match"
                );
                // turn fgroup (if it exists) into group and put assigns into fgroup_assigns
                let mut fgroup_assigns: Vec<ir::Assignment<ir::StaticTiming>> =
                    match **fbranch {
                        ir::StaticControl::Empty(_) => vec![],
                        _ => {
                            let fgroup =
                                self.inline_static_control(fbranch, builder);
                            assert_eq!(
                                fbranch_latency,
                                fgroup.borrow().get_latency(),
                                "false branch and false branch group latency do not match"
                            );
                            let fgroup_assigns: Vec<
                                ir::Assignment<ir::StaticTiming>,
                            > = fgroup.borrow_mut().assignments.clone();
                            fgroup_assigns
                        }
                    };

                // if_group = the eventual group we inline all the assignments
                // into.
                let if_group = builder.add_static_group("static_if", *latency);
                let mut if_group_assigns: Vec<
                    ir::Assignment<ir::StaticTiming>,
                > = vec![];
                if *latency == 1 {
                    // Special case: if latency = 1, we don't need a register
                    // to hold the value of the cond port.
                    let cond_port_guard = ir::Guard::Port(Rc::clone(port));
                    let not_cond_port_guard =
                        ir::Guard::Not(Box::new(cond_port_guard.clone()));
                    tgroup_assigns.iter_mut().for_each(|assign| {
                        // adds the cond_port ? guard
                        assign
                            .guard
                            .update(|guard| guard.and(cond_port_guard.clone()))
                    });
                    fgroup_assigns.iter_mut().for_each(|assign| {
                        // adds the !cond_port ? guard
                        assign.guard.update(|guard| {
                            guard.and(not_cond_port_guard.clone())
                        })
                    });
                } else {
                    // If latency != 1, we do need a register to hold the
                    // value of the cond port.
                    structure!( builder;
                        let cond = prim std_reg(port.borrow().width);
                        let cond_wire = prim std_wire(port.borrow().width);
                    );
                    // build_cond_assigns makes assigns such that
                    // cond_wire.in can guard all of the tru branch assigns,
                    // and !cond_wire.in can guard all fo the false branch assigns
                    let cond_assigns = StaticInliner::make_cond_assigns(
                        Rc::clone(&cond),
                        Rc::clone(&cond_wire),
                        Rc::clone(port),
                        *latency,
                        builder,
                    );
                    if_group_assigns.extend(cond_assigns.to_vec());

                    // need to do two things:
                    // add cond_wire.out ? in front of each tgroup assignment
                    // (and ! cond_wire.out for fgroup assignemnts)
                    // add %[0:tbranch_latency] in front of each tgroup assignment
                    // (and %[0: fbranch_latency]) in front of each fgroup assignment
                    let cond_wire_guard =
                        ir::Guard::Port(cond_wire.borrow().get("out"));
                    let not_cond_wire_guard =
                        ir::Guard::Not(Box::new(cond_wire_guard.clone()));
                    tgroup_assigns.iter_mut().for_each(|assign| {
                        // adds the %[0:tbranch_latency] ? guard
                        Self::update_assignment_timing(
                            assign,
                            0,
                            tbranch_latency,
                        );
                        // adds the cond_wire ? guard
                        assign
                            .guard
                            .update(|guard| guard.and(cond_wire_guard.clone()))
                    });
                    fgroup_assigns.iter_mut().for_each(|assign| {
                        // adds the %[0:fbranch_latency] ? guard
                        Self::update_assignment_timing(
                            assign,
                            0,
                            fbranch_latency,
                        );
                        // adds the !cond_wire ? guard
                        assign.guard.update(|guard| {
                            guard.and(not_cond_wire_guard.clone())
                        })
                    });
                }
                if_group_assigns.extend(tgroup_assigns);
                if_group_assigns.extend(fgroup_assigns);
                if_group.borrow_mut().assignments = if_group_assigns;
                if_group.borrow_mut().attributes = attributes.clone();
                if_group
            }
            ir::StaticControl::Repeat(ir::StaticRepeat {
                latency,
                num_repeats,
                body,
                attributes,
            }) => {
                let repeat_group =
                    builder.add_static_group("static_repeat", *latency);
                // turn body into a group body_group by recursively calling inline_static_control
                let body_group = self.inline_static_control(body, builder);
                assert_eq!(
                    *latency,
                    (num_repeats * body_group.borrow().get_latency()),
                    "latency of static repeat is not equal to num_repeats * latency of body"
                );
                // the assignments in the repeat group should simply trigger the
                // body group. So the static group will literally look like:
                // static group static_repeat <num_repeats * body_latency> {body[go] = 1'd1;}
                structure!( builder;
                    let signal_on = constant(1,1);
                );
                let trigger_body = build_assignments!(builder;
                    body_group["go"] = ? signal_on["out"];
                );
                repeat_group.borrow_mut().assignments = trigger_body.to_vec();
                repeat_group.borrow_mut().attributes = attributes.clone();
                repeat_group
            }
            ir::StaticControl::Empty(_) => unreachable!(
                "should not call inline_static_control on empty stmt"
            ),
            ir::StaticControl::Invoke(inv) => {
                dbg!(inv.comp.borrow().name());
                todo!("implement static inlining for invokes")
            }
        }
    }
}

impl Visitor for StaticInliner {
    /// Executed after visiting the children of a [ir::Static] node.
    fn start_static_control(
        &mut self,
        s: &mut ir::StaticControl,
        comp: &mut ir::Component,
        sigs: &LibrarySignatures,
        _comps: &[ir::Component],
    ) -> VisResult {
        let mut builder = ir::Builder::new(comp, sigs);
        let replacement_group = self.inline_static_control(s, &mut builder);
        Ok(Action::Change(Box::new(ir::Control::from(
            ir::StaticControl::from(replacement_group),
        ))))
    }
}