calyx_opt/passes/papercut.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
use crate::analysis::{self, AssignmentAnalysis};
use crate::traversal::{
Action, ConstructVisitor, DiagnosticContext, DiagnosticPass, Named,
VisResult, Visitor,
};
use calyx_ir::{self as ir, LibrarySignatures};
use calyx_utils::{CalyxResult, Error, WithPos};
use itertools::Itertools;
use std::collections::{HashMap, HashSet};
/// Tuple containing (port, set of ports).
/// When the first port is read from, all of the ports in the set must be written to.
type ReadTogether = (ir::Id, HashSet<ir::Id>);
/// Pass to check for common errors such as missing assignments to `done` holes
/// of groups.
#[derive(Debug)]
pub struct Papercut {
/// Map from (primitive name) -> Vec<(set of ports)>
/// When any of the ports in a set is driven, all ports in that set must
/// be driven.
/// For example, when driving the `in` port of a register, the `write_en`
/// signal must also be driven.
write_together: HashMap<ir::Id, Vec<HashSet<ir::Id>>>,
/// Map from (primitive name) -> Vec<(port, set of ports)>
/// When the `port` in the tuple is being read from, all the ports in the
/// set must be driven.
read_together: HashMap<ir::Id, Vec<ReadTogether>>,
/// The cells that are driven through continuous assignments
cont_cells: HashSet<ir::Id>,
/// diagnostic context to accumulate multiple errors
diag: DiagnosticContext,
}
impl Papercut {
#[allow(unused)]
/// String representation of the write together and read together specifications.
/// Used for debugging. Should not be relied upon by external users.
fn fmt_write_together_spec(&self) -> String {
self.write_together
.iter()
.map(|(prim, writes)| {
let writes = writes
.iter()
.map(|write| {
write
.iter()
.sorted()
.map(|port| format!("{port}"))
.join(", ")
})
.join("; ");
format!("{}: [{}]", prim, writes)
})
.join("\n")
}
}
impl ConstructVisitor for Papercut {
fn from(ctx: &ir::Context) -> CalyxResult<Self> {
let write_together =
analysis::PortInterface::write_together_specs(ctx.lib.signatures());
let read_together =
analysis::PortInterface::comb_path_specs(ctx.lib.signatures())?;
Ok(Papercut {
write_together,
read_together,
cont_cells: HashSet::new(),
diag: DiagnosticContext::default(),
})
}
fn clear_data(&mut self) {
// Library specifications are shared
self.cont_cells = HashSet::new();
}
}
impl Named for Papercut {
fn name() -> &'static str {
"papercut"
}
fn description() -> &'static str {
"Detect various common made mistakes"
}
}
/// Extract information about a port.
fn port_information(
port_ref: ir::RRC<ir::Port>,
) -> Option<((ir::Id, ir::Id), ir::Id)> {
let port = port_ref.borrow();
if let ir::PortParent::Cell(cell_wref) = &port.parent {
let cell_ref = cell_wref.upgrade();
let cell = cell_ref.borrow();
if let ir::CellType::Primitive { name, .. } = &cell.prototype {
return Some(((cell.name(), *name), port.name));
}
}
None
}
impl DiagnosticPass for Papercut {
fn diagnostics(&self) -> &DiagnosticContext {
&self.diag
}
}
impl Visitor for Papercut {
fn start(
&mut self,
comp: &mut ir::Component,
_ctx: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
// If the component isn't marked "nointerface", it should have an invokable
// interface.
if !comp.attributes.has(ir::BoolAttr::NoInterface) && !comp.is_comb {
// If the control program is empty, check that the `done` signal has been assigned to.
if let ir::Control::Empty(..) = *comp.control.borrow() {
for p in comp
.signature
.borrow()
.find_all_with_attr(ir::NumAttr::Done)
{
let done_use =
comp.continuous_assignments.iter().find(|assign_ref| {
let assign = assign_ref.dst.borrow();
// If at least one assignment used the `done` port, then
// we're good.
assign.name == p.borrow().name && !assign.is_hole()
});
if done_use.is_none() {
self.diag.err(Error::papercut(format!("Component `{}` has an empty control program and does not assign to the done port `{}`. Without an assignment to the done port, the component cannot return control flow.", comp.name, p.borrow().name)).with_pos(&comp.attributes))
}
}
}
}
// For each component that's being driven in a group and comb group, make sure all signals defined for
// that component's `write_together' and `read_together' are also driven.
// For example, for a register, both the `.in' port and the `.write_en' port need to be
// driven.
for group_ref in comp.get_groups().iter() {
let group = group_ref.borrow();
self.check_specs(&group.assignments, &group.attributes);
}
for group_ref in comp.get_static_groups().iter() {
let group = group_ref.borrow();
self.check_specs(&group.assignments, &group.attributes);
}
for cgr in comp.comb_groups.iter() {
let cg = cgr.borrow();
self.check_specs(&cg.assignments, &cg.attributes);
}
// Compute all cells that are driven in by the continuous assignments
self.cont_cells = comp
.continuous_assignments
.iter()
.analysis()
.cell_writes()
.map(|cr| cr.borrow().name())
.collect();
Ok(Action::Continue)
}
fn start_while(
&mut self,
s: &mut ir::While,
_comp: &mut ir::Component,
_ctx: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
if s.cond.is_none() {
let port = s.port.borrow();
if let ir::PortParent::Cell(cell_wref) = &port.parent {
let cell_ref = cell_wref.upgrade();
let cell = cell_ref.borrow();
if let ir::CellType::Primitive {
is_comb,
name: prim_name,
..
} = &cell.prototype
{
// If the cell is combinational and not driven by continuous assignments
if *is_comb && !self.cont_cells.contains(&cell.name()) {
let msg = format!(
"Port `{}.{}` is an output port on combinational primitive `{}` and will always output 0. Add a `with` statement to the `while` statement to ensure it has a valid value during execution.",
cell.name(),
port.name,
prim_name
);
// Use dummy Id to get correct source location for error
self.diag
.err(Error::papercut(msg).with_pos(&s.attributes));
}
}
}
}
Ok(Action::Continue)
}
fn start_if(
&mut self,
s: &mut ir::If,
_comp: &mut ir::Component,
_ctx: &LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
if s.cond.is_none() {
let port = s.port.borrow();
if let ir::PortParent::Cell(cell_wref) = &port.parent {
let cell_ref = cell_wref.upgrade();
let cell = cell_ref.borrow();
if let ir::CellType::Primitive {
is_comb,
name: prim_name,
..
} = &cell.prototype
{
// If the cell is combinational and not driven by continuous assignments
if *is_comb && !self.cont_cells.contains(&cell.name()) {
let msg = format!(
"Port `{}.{}` is an output port on combinational primitive `{}` and will always output 0. Add a `with` statement to the `if` statement to ensure it has a valid value during execution.",
cell.name(),
port.name,
prim_name
);
// Use dummy Id to get correct source location for error
self.diag
.err(Error::papercut(msg).with_pos(&s.attributes));
}
}
}
}
Ok(Action::Continue)
}
}
impl Papercut {
fn check_specs<T, P>(&mut self, assigns: &[ir::Assignment<T>], pos: &P)
where
P: WithPos,
{
let all_writes = assigns
.iter()
.analysis()
.writes()
.filter_map(port_information)
.into_grouping_map()
.collect::<HashSet<_>>();
let all_reads = assigns
.iter()
.analysis()
.reads()
.filter_map(port_information)
.into_grouping_map()
.collect::<HashSet<_>>();
for ((inst, comp_type), reads) in all_reads {
if let Some(spec) = self.read_together.get(&comp_type) {
let empty = HashSet::new();
let writes =
all_writes.get(&(inst, comp_type)).unwrap_or(&empty);
for (read, required) in spec {
if reads.contains(read)
&& required.difference(writes).next().is_some()
{
let missing = required
.difference(writes)
.sorted()
.map(|port| format!("{}.{}", inst.clone(), port))
.join(", ");
let msg = format!(
"Required signal not driven inside the group.\
\nWhen reading the port `{}.{}', the ports [{}] must be written to.\
\nThe primitive type `{}' requires this invariant.",
inst, read, missing, comp_type
);
self.diag.err(Error::papercut(msg).with_pos(pos));
}
}
}
}
for ((inst, comp_type), writes) in all_writes {
if let Some(spec) = self.write_together.get(&comp_type) {
// For each write together spec.
for required in spec {
// It should either be the case that:
// 1. `writes` contains no writes that overlap with `required`
// In which case `required - writes` == `required`.
// 2. `writes` contains writes that overlap with `required`
// In which case `required - writes == {}`
let mut diff: HashSet<_> =
required.difference(&writes).copied().collect();
if diff.is_empty() || diff == *required {
continue;
}
let first =
writes.intersection(required).sorted().next().unwrap();
let missing = diff
.drain()
.sorted()
.map(|port| format!("{}.{}", inst, port))
.join(", ");
let msg = format!(
"Required signal not driven inside the group. \
When writing to the port `{}.{}', the ports [{}] must also be written to. \
The primitive type `{}' specifies this using a @write_together spec.",
inst, first, missing, comp_type
);
self.diag.err(Error::papercut(msg).with_pos(pos));
}
}
}
}
}