calyx_opt/passes/cell_share.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
use crate::analysis::{
AssignmentAnalysis, GraphColoring, LiveRangeAnalysis, ShareSet,
StaticParTiming,
};
use crate::traversal::{
Action, ConstructVisitor, Named, ParseVal, PassOpt, VisResult, Visitor,
};
use calyx_ir::{self as ir};
use calyx_ir::{BoolAttr, rewriter};
use calyx_utils::{CalyxResult, OutputFile};
use itertools::Itertools;
use serde_json::{Value, json};
use std::collections::{HashMap, HashSet};
// function to turn cell types to string when we are building the json for
// share_freqs
fn cell_type_to_string(cell_type: &ir::CellType) -> String {
match cell_type {
ir::CellType::Primitive {
name,
param_binding,
..
} => {
let param_str = param_binding
.iter()
.map(|(id, val)| format!("{id}_{val}"))
.join("_");
format!("{name}_{param_str}")
}
ir::CellType::Component { name } => name.to_string(),
ir::CellType::ThisComponent => "ThisComponent".to_string(),
ir::CellType::Constant { val, width } => {
format!("Const_{val}_{width}")
}
}
}
/// Given a [LiveRangeAnalysis] that specifies the "share" and "state_share" cells
/// alive at each group, minimizes the cells used for each component.
///
/// This works by constructing an interference graph for each alive "state_share" cell.
/// If two cells are ever alive at the same time, then there is an edge
/// between them in the interference graph. Additionally, if two cells
/// are different prototypes, then there is an edge between them.
///
/// A greedy graph coloring algorithm on the interference graph
/// is used to assign each cell a name.
///
/// By default, this pass will share a given cell as many times as possible. However,
/// by passing a command line argument, we can limit the number of times a given
/// cell is reused. The rationale behind this option is that, in certain cases,
/// if you share a given component too much, the logic to determine when that
/// component should be activated ends up being more expensive than just using
/// a separate component. To pass this command line argument, you give three numbers:
/// The number of times a given combinational component can be shared, the number
/// of times a given register can be shared, and the number of times all other
/// components can be shared. Generally we would want settings such that 1 < 2 < 3,
/// since a given share of a 3) would save more hardware than a share of a 2), and
/// a share of a 2) would save more hardware than a share of a 1).
/// The exact command line syntax to use: if we had a file, "x.futil" and ran:
/// `cargo run x.futil -x cell-share:bounds=2,4,8`, then we would only share a
/// given combinational component at most twice, a given register at most 4 times,
/// and all other components at most 8 times. If you wanted to do something with
/// fud then run `fud e ... -s calyx.flags " -x cell-share:bounds=2,4,8"`. Finally
/// if you do not want to bound the sharing for a particular cell type,
/// you can pass -1 as a bound. So for example if you passed
/// `-x cell-share:bounds=2,-1,3` this means that you will always share registers.
/// Note: *The no spaces are important.*
/// Also, if you pass the following flag: `-x cell-share:print-share-freqs=file-name`
/// this pass will write a json to `file-name`. If want to print into stdout
/// then just set the file-name to be "stdout" (you don't need the quotes
/// when you actually pass in the argument, so run `-x cell-share:print-share-freqs=stdout`),
/// and if you want to print to stderr then just set the file-name to be "stderr".
/// The json will map an integer (say n) to the number of cells in the new design (i.e.,
/// the design after sharing has been performed) that were shared
/// exactly n times. So the key n = 2 will be mapped to the number of cells in the
/// new design that are shared exactly twice.
///
/// Other flags:
/// print_par_timing: prints the par-timing-map
/// calyx_2020: shares using the Calyx 2020 settings: unlimited sharing of combinational
/// components and registers, but no sharing of anything else
///
///
/// This pass only renames uses of cells. [crate::passes::DeadCellRemoval] should be run after this
/// to actually remove the definitions.
pub struct CellShare {
live: LiveRangeAnalysis,
rewrites: HashMap<ir::Id, ir::RRC<ir::Cell>>,
/// Set of state shareable components (as type names)
state_shareable: ShareSet,
/// Set of shareable components (as type names)
shareable: ShareSet,
/// Cell active in continuous assignments, or ref cells (we want to ignore both)
cont_ref_cells: HashSet<ir::Id>,
/// Maps cell types to the corresponding pdf. Each pdf is a hashmap which maps
/// the number of times a given cell name reused (i.e., shared) to the
/// number of cells that have been shared that many times times.
share_freqs: HashMap<ir::Id, HashMap<ir::CellType, HashMap<i64, i64>>>,
/// maps the ids of groups to a set of tuples (i,j), the clock cycles (relative
/// to the start of the par) that group is live
par_timing_map: StaticParTiming,
//name of main (we know main will only be run once)
main: ir::Id,
// ========= Pass Options ============
/// The number of times a given class of cell can be shared. bounds should be
/// length 3 to hold the 3 classes: comb cells, registers, and everything else
bounds: [Option<i64>; 3],
/// executes cell share pass using Calyx 2020 benchmarks: no component
/// sharing, and only sharing registers and combinational components
calyx_2020: bool,
/// whether or not to print the share_freqs
print_share_freqs: Option<OutputFile>,
print_par_timing: Option<OutputFile>,
}
impl Named for CellShare {
fn name() -> &'static str {
"cell-share"
}
fn description() -> &'static str {
"use the fewest possible cells"
}
fn opts() -> Vec<PassOpt> {
vec![
PassOpt::new(
"print-share-freqs",
"print sharing frequencies",
ParseVal::OutStream(OutputFile::Null),
PassOpt::parse_outstream,
),
PassOpt::new(
"bounds",
"maximum amount of sharing for combinational components, registers, and other components. Negative valye means no bound",
ParseVal::List(vec![]),
PassOpt::parse_num_list,
),
PassOpt::new(
"print-par-timing",
"print timing information for `par` blocks",
ParseVal::OutStream(OutputFile::Null),
PassOpt::parse_outstream,
),
PassOpt::new(
"calyx-2020",
"share using the Calyx 2020 settings: no component sharing, only share registers/combinational components",
ParseVal::Bool(false),
PassOpt::parse_bool,
),
]
}
}
impl ConstructVisitor for CellShare {
fn from(ctx: &ir::Context) -> CalyxResult<Self> {
let state_shareable = ShareSet::from_context::<true>(ctx);
let shareable = ShareSet::from_context::<false>(ctx);
let opts = Self::get_opts(ctx);
Ok(CellShare {
live: LiveRangeAnalysis::default(),
rewrites: HashMap::new(),
cont_ref_cells: HashSet::new(),
state_shareable,
shareable,
par_timing_map: StaticParTiming::default(),
main: ctx.entrypoint,
share_freqs: HashMap::new(),
calyx_2020: opts["calyx-2020"].bool(),
bounds: opts["bounds"].num_list_exact::<3>(),
print_par_timing: opts["print-par-timing"].not_null_outstream(),
print_share_freqs: opts["print-share-freqs"].not_null_outstream(),
})
}
fn clear_data(&mut self) {
self.rewrites = HashMap::new();
self.live = LiveRangeAnalysis::default();
self.cont_ref_cells = HashSet::new();
}
}
impl CellShare {
fn initialize(
&mut self,
comp: &ir::Component,
_sigs: &ir::LibrarySignatures,
) {
//add cont cells
self.cont_ref_cells = comp
.continuous_assignments
.iter()
.analysis()
.cell_uses()
.map(|cr| cr.borrow().name())
.collect();
//add ref cells
self.cont_ref_cells.extend(
comp.cells
.iter()
.filter(|cell| cell.borrow().is_reference())
.map(|cell| cell.borrow().name()),
);
// We know main will only ever execute once
// If the component is shareable, then we know it completley overwrites
// state at each invocation and is therefore fine to treat as if it
// runs once (i.e., state doesn't live beyond a single invocation).
let only_run_once = comp.name == self.main
|| comp.attributes.has(ir::BoolAttr::StateShare);
// TODO(rachit): Pass cont_ref_cells to LiveRangeAnalysis so that it ignores unneccessary
// cells.
self.live = LiveRangeAnalysis::new(
&mut comp.control.borrow_mut(),
self.state_shareable.clone(),
self.shareable.clone(),
only_run_once,
);
self.par_timing_map = StaticParTiming::new(
&mut comp.control.borrow_mut(),
comp.name,
&self.live,
);
if let Some(stream) = &mut self.print_par_timing {
write!(stream.get_write(), "{:?}", self.par_timing_map).unwrap();
}
}
fn cell_filter(&self, cell: &ir::Cell) -> bool {
// Cells used in continuous assignments cannot be shared, nor can ref cells.
if self.cont_ref_cells.contains(&cell.name()) {
return false;
}
// Cells that have @protected cannot be shared (even if they have share/state_share attributes)
if cell.attributes.has(BoolAttr::Protected) {
return false;
}
if let Some(ref name) = cell.type_name() {
self.state_shareable.contains(name) || self.shareable.contains(name)
} else {
false
}
}
// prints the json if self.print_share_freqs is not None
fn print_share_json(&mut self) {
if let Some(file) = &mut self.print_share_freqs {
let printable_share_freqs: HashMap<String, HashMap<String, _>> =
self.share_freqs
.iter()
.map(|(id, freq_map)| {
(
id.to_string(),
freq_map
.iter()
.map(|(cell_type, pdf)| {
(cell_type_to_string(cell_type), pdf)
})
.collect(),
)
})
.collect();
let json_share_freqs: Value = json!(printable_share_freqs);
write!(file.get_write(), "{}", json_share_freqs).unwrap()
}
}
}
/// The algorithm that runs is:
/// - instantiate conflict graph using all component cells that satisfy `cell_filter`
/// - use [ScheduleConflicts] to find groups/invokes that run in parallel with each other
/// - for each tuple combination of cells that return true on cell_filter(), c1 and c2
/// - first determine if their live ranges overlap. If so, then insert a conflict between
/// c1 and c2
/// - if c1 and c2 don't have overlapping live ranges, check if c1 and c2 are ever
/// live at within the same par block, and they are live at different children
/// of the par block. If the parent par is not static, then add a conflict.
/// If the parent par is static, then we can use the static_par_timing analysis
/// to check whether the cells' liveness actually overlaps.
/// - perform graph coloring using `self.ordering` to define the order of the greedy coloring
/// - use coloring to rewrite group assignments, continuous assignments, and conditional ports.
impl Visitor for CellShare {
fn start(
&mut self,
comp: &mut ir::Component,
sigs: &ir::LibrarySignatures,
_comps: &[ir::Component],
) -> VisResult {
self.initialize(comp, sigs);
let cells = comp.cells.iter().filter(|c| self.cell_filter(&c.borrow()));
// Mapping from cell type to names of all cells of that type.
let mut cells_by_type: HashMap<ir::CellType, Vec<ir::Id>> =
HashMap::new();
for cell in cells {
cells_by_type
.entry(cell.borrow().prototype.clone())
.or_default()
.push(cell.borrow().name());
}
// Maps cell type to conflict graph (will be used to perform coloring)
let mut graphs_by_type: HashMap<ir::CellType, GraphColoring<ir::Id>> =
cells_by_type
.clone()
.into_iter()
.map(|(key, cell_names)| {
(key, GraphColoring::from(cell_names.into_iter()))
})
.collect();
// We assume unique ids have already been computed by LiveRangeAnalysis
// live_once_map maps celltypes to maps that map cells to control statements
// in which the cell was live for at least one group/invoke. Furthermore,
// only control statements that are direct children of par blocks
// are included in this map.
let mut live_once_map = HashMap::new();
// Maps every control statement that is a direct child of a par block to
// its parent par block. (maps id number to id number)
let mut par_thread_map = HashMap::new();
// Maps celltype to map that maps cells to groups/invokes in which the cell is live.
let mut live_cell_map = HashMap::new();
// build live_once_map and par_thread_map
self.live.get_live_control_data(
&mut live_once_map,
&mut par_thread_map,
&mut live_cell_map,
&HashSet::new(),
&comp.control.borrow(),
);
// Adding the conflicts
for (cell_type, cells) in &cells_by_type {
// Run remove_dead_cells before this cell-share pass.
let g = graphs_by_type.get_mut(cell_type).unwrap();
// mapping from cell names to the enables/invokes in which it is live
let cell_to_nodes =
live_cell_map.entry(cell_type.clone()).or_default();
// mapping of cell names to the control statements in which it is live
// at least once. Only control statements that are direct children of
// par blocks are included
let cell_to_control =
live_once_map.entry(cell_type.clone()).or_default();
for (a, b) in cells.iter().tuple_combinations() {
// checking if live ranges overlap
// nodes (groups/invokes) in which a is live
if let Some(live_a) = cell_to_nodes.get(a) {
if let Some(live_b) = cell_to_nodes.get(b) {
if !live_a.is_disjoint(live_b) {
g.insert_conflict(a, b);
continue;
}
}
}
// checking if b is live at any groups/invokes running in parallel
// to groups/invokes live at a
// get the children of pars in which a was alive "at least once"
if let Some(live_once_a) = cell_to_control.get(a) {
// get the children of pars in which b was alive "at least once"
if let Some(live_once_b) = cell_to_control.get(b) {
'outer: for live_a in live_once_a {
for live_b in live_once_b {
// a and b are live within the same par block but not within
// the same child thread, then insert conflict.
let parent_a =
par_thread_map.get(live_a).unwrap();
let parent_b =
par_thread_map.get(live_b).unwrap();
if live_a != live_b && parent_a == parent_b {
// We have to check par_timing_map
// to see whether liveness overlaps.
// For dynamic pars, liveness_overlaps() returns
// true no matter what.
if self.par_timing_map.liveness_overlaps(
parent_a, live_a, live_b, a, b,
) {
g.insert_conflict(a, b);
break 'outer;
}
}
}
}
}
}
}
}
// perform graph coloring to rename the cells
let mut coloring: rewriter::RewriteMap<ir::Cell> = HashMap::new();
let mut comp_share_freqs: HashMap<ir::CellType, HashMap<i64, i64>> =
HashMap::new();
let [comb_bound, reg_bound, other_bound] = &self.bounds;
for (cell_type, mut graph) in graphs_by_type {
// getting bound, based on self.bounds and cell_type
let bound = {
if let Some(ref name) = cell_type.get_name() {
let is_comb = self.shareable.contains(name);
let is_reg = name == "std_reg";
// if self.calyx_2020, then set bounds based on that
// otherwise, look at the actual self.bounds values to
// get the bounds
if self.calyx_2020 {
if is_comb || is_reg { &None } else { &Some(1) }
} else if is_comb {
comb_bound
} else if is_reg {
reg_bound
} else {
other_bound
}
} else {
// sharing bound doesn't really matter for ThisComponent/Constants
&None
}
};
if graph.has_nodes() {
coloring.extend(
graph
.color_greedy(*bound, false)
.iter()
.map(|(a, b)| (*a, comp.find_cell(*b).unwrap())),
);
// only generate share-freqs if we're going to use them.
if self.print_share_freqs.is_some() {
// must accumulate sharing numbers for share_freqs
comp_share_freqs.insert(cell_type, graph.get_share_freqs());
}
}
}
// add the sharing freqs for the component we just analyzed
if self.print_share_freqs.is_some() {
// must accumulate sharing numbers for share_freqs
self.share_freqs.insert(comp.name, comp_share_freqs);
// print share freqs json if self.print_share_freqs is not none
self.print_share_json();
}
// Rewrite assignments using the coloring generated.
let rewriter = ir::Rewriter {
cell_map: coloring,
..Default::default()
};
comp.for_each_assignment(|assign| {
assign.for_each_port(|port| rewriter.get(port));
});
comp.for_each_static_assignment(|assign| {
assign.for_each_port(|port| rewriter.get(port));
});
// Rewrite control uses of ports
rewriter.rewrite_control(&mut comp.control.borrow_mut());
Ok(Action::Stop)
}
}