calyx_opt/analysis/
static_fsm.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
use crate::passes::math_utilities::get_bit_width_from;
use calyx_ir::{self as ir};
use calyx_ir::{Nothing, build_assignments};
use calyx_ir::{guard, structure};
use std::collections::HashMap;
use std::rc::Rc;

#[derive(Debug, Clone, Copy, Default)]
// Define an FSMEncoding Enum
pub enum FSMEncoding {
    #[default]
    Binary,
    OneHot,
}

#[derive(Debug)]
/// Represents a static FSM (i.e., the actual register in hardware that counts)
pub struct StaticFSM {
    /// The actual register cell
    fsm_cell: ir::RRC<ir::Cell>,
    /// Type of encoding (binary or one-hot)
    encoding: FSMEncoding,
    /// The fsm's bitwidth (this redundant information bc  we have `cell`)
    /// but makes it easier if we easily have access to this.
    bitwidth: u64,
    /// Mapping of queries: (u64, u64) -> Port
    queries: HashMap<(u64, u64), ir::RRC<ir::Port>>,
}
impl StaticFSM {
    // Builds a static_fsm from: num_states and encoding type.
    pub fn from_basic_info(
        num_states: u64,
        encoding: FSMEncoding,
        builder: &mut ir::Builder,
    ) -> Self {
        // Determine number of bits needed in the register.
        let fsm_size = match encoding {
            /* represent 0..latency */
            FSMEncoding::Binary => get_bit_width_from(num_states + 1),
            FSMEncoding::OneHot => num_states,
        };
        // OHE needs an initial value of 1.
        let register = match encoding {
            FSMEncoding::Binary => {
                builder.add_primitive("fsm", "std_reg", &[fsm_size])
            }
            FSMEncoding::OneHot => {
                builder.add_primitive("fsm", "init_one_reg", &[fsm_size])
            }
        };

        StaticFSM {
            encoding,
            fsm_cell: register,
            bitwidth: fsm_size,
            queries: HashMap::new(),
        }
    }

    // Builds an incrementer, and returns the assignments and incrementer cell itself.
    // assignments are:
    // adder.left = fsm.out; adder.right = 1;
    // Returns tuple: (assignments, adder)
    pub fn build_incrementer(
        &self,
        builder: &mut ir::Builder,
    ) -> (Vec<ir::Assignment<Nothing>>, ir::RRC<ir::Cell>) {
        let fsm_cell = Rc::clone(&self.fsm_cell);
        // For OHE, the "adder" can just be a shifter.
        // For OHE the first_state = 1 rather than 0.
        // Final state is encoded differently for OHE vs. Binary
        let adder = match self.encoding {
            FSMEncoding::Binary => {
                builder.add_primitive("adder", "std_add", &[self.bitwidth])
            }
            FSMEncoding::OneHot => {
                builder.add_primitive("lsh", "std_lsh", &[self.bitwidth])
            }
        };
        let const_one = builder.add_constant(1, self.bitwidth);
        let incr_assigns = build_assignments!(
          builder;
          // increments the fsm
          adder["left"] = ? fsm_cell["out"];
          adder["right"] = ? const_one["out"];
        )
        .to_vec();
        (incr_assigns, adder)
    }

    // Returns the assignments that conditionally increment the fsm,
    // based on guard.
    // The assignments are:
    // fsm.in = guard ? adder.out;
    // fsm.write_en = guard ? 1'd1;
    // Returns a vec of these assignments.
    pub fn conditional_increment(
        &self,
        guard: ir::Guard<Nothing>,
        adder: ir::RRC<ir::Cell>,
        builder: &mut ir::Builder,
    ) -> Vec<ir::Assignment<Nothing>> {
        let fsm_cell = Rc::clone(&self.fsm_cell);
        let signal_on = builder.add_constant(1, 1);
        let my_assigns = build_assignments!(
          builder;
          // increments the fsm
          fsm_cell["in"] = guard ? adder["out"];
          fsm_cell["write_en"] = guard ? signal_on["out"];
        );
        my_assigns.to_vec()
    }

    // Returns the assignments that conditionally resets the fsm to 0,
    // but only if guard is true.
    // The assignments are:
    // fsm.in = guard ? 0;
    // fsm.write_en = guard ? 1'd1;
    // Returns a vec of these assignments.
    pub fn conditional_reset(
        &self,
        guard: ir::Guard<Nothing>,
        builder: &mut ir::Builder,
    ) -> Vec<ir::Assignment<Nothing>> {
        let fsm_cell = Rc::clone(&self.fsm_cell);
        let signal_on = builder.add_constant(1, 1);
        let const_0 = match self.encoding {
            FSMEncoding::Binary => builder.add_constant(0, self.bitwidth),
            FSMEncoding::OneHot => builder.add_constant(1, self.bitwidth),
        };
        let assigns = build_assignments!(
          builder;
          fsm_cell["in"] = guard ? const_0["out"];
          fsm_cell["write_en"] = guard ? signal_on["out"];
        );
        assigns.to_vec()
    }

    // Returns a guard that takes a (beg, end) `query`, and returns the equivalent
    // guard to `beg <= fsm.out < end`.
    pub fn query_between(
        &mut self,
        builder: &mut ir::Builder,
        query: (u64, u64),
    ) -> Box<ir::Guard<Nothing>> {
        let (beg, end) = query;
        // Querying OHE is easy, since we already have `self.get_one_hot_query()`
        let fsm_cell = Rc::clone(&self.fsm_cell);
        if matches!(self.encoding, FSMEncoding::OneHot) {
            let g = self.get_one_hot_query(fsm_cell, (beg, end), builder);
            return Box::new(g);
        }

        if beg + 1 == end {
            // if beg + 1 == end then we only need to check if fsm == beg
            let interval_const = builder.add_constant(beg, self.bitwidth);
            let g = guard!(fsm_cell["out"] == interval_const["out"]);
            Box::new(g)
        } else if beg == 0 {
            // if beg == 0, then we only need to check if fsm < end
            let end_const = builder.add_constant(end, self.bitwidth);
            let lt: ir::Guard<Nothing> =
                guard!(fsm_cell["out"] < end_const["out"]);
            Box::new(lt)
        } else {
            // otherwise, check if fsm >= beg & fsm < end
            let beg_const = builder.add_constant(beg, self.bitwidth);
            let end_const = builder.add_constant(end, self.bitwidth);
            let beg_guard: ir::Guard<Nothing> =
                guard!(fsm_cell["out"] >= beg_const["out"]);
            let end_guard: ir::Guard<Nothing> =
                guard!(fsm_cell["out"] < end_const["out"]);
            Box::new(ir::Guard::And(Box::new(beg_guard), Box::new(end_guard)))
        }
    }

    // Given a one-hot query, it will return a guard corresponding to that query.
    // If it has already built the query (i.e., added the wires/continuous assigments),
    // it just uses the same port.
    // Otherwise it will build the query.
    fn get_one_hot_query(
        &mut self,
        fsm_cell: ir::RRC<ir::Cell>,
        (lb, ub): (u64, u64),
        builder: &mut ir::Builder,
    ) -> ir::Guard<Nothing> {
        match self.queries.get(&(lb, ub)) {
            None => {
                let port = Self::build_one_hot_query(
                    Rc::clone(&fsm_cell),
                    self.bitwidth,
                    (lb, ub),
                    builder,
                );
                self.queries.insert((lb, ub), Rc::clone(&port));
                ir::Guard::port(port)
            }
            Some(port) => ir::Guard::port(Rc::clone(port)),
        }
    }

    // Given a (lb, ub) query, and an fsm (and for convenience, a bitwidth),
    // Returns a `port`: port is a `wire.out`, where `wire` holds
    // whether or not the query is true, i.e., whether the FSM really is
    // between [lb, ub).
    fn build_one_hot_query(
        fsm_cell: ir::RRC<ir::Cell>,
        fsm_bitwidth: u64,
        (lb, ub): (u64, u64),
        builder: &mut ir::Builder,
    ) -> ir::RRC<ir::Port> {
        // The wire that holds the query
        let formatted_name = format!("bw_{}_{}", lb, ub);
        let wire: ir::RRC<ir::Cell> =
            builder.add_primitive(formatted_name, "std_wire", &[1]);
        let wire_out = wire.borrow().get("out");

        // Continuous assignments to check the FSM
        let assigns = {
            let in_width = fsm_bitwidth;
            // Since 00...00 is the initial state, we need to check lb-1.
            let start_index = lb;
            // Since verilog slices are inclusive.
            let end_index = ub - 1;
            let out_width = ub - lb; // == (end_index - start_index + 1)
            structure!(builder;
                let slicer = prim std_bit_slice(in_width, start_index, end_index, out_width);
                let const_slice_0 = constant(0, out_width);
                let signal_on = constant(1,1);
            );
            let slicer_neq_0 = guard!(slicer["out"] != const_slice_0["out"]);
            // Extend the continuous assignmments to include this particular query for FSM state;
            let my_assigns = build_assignments!(builder;
                slicer["in"] = ? fsm_cell["out"];
                wire["in"] = slicer_neq_0 ? signal_on["out"];
            );
            my_assigns.to_vec()
        };
        builder.add_continuous_assignments(assigns);
        wire_out
    }

    // Return a unique id (i.e., get_unique_id for each FSM in the same component
    // will be different).
    pub fn get_unique_id(&self) -> ir::Id {
        self.fsm_cell.borrow().name()
    }

    // Return the bitwidth of an FSM object
    pub fn get_bitwidth(&self) -> u64 {
        self.bitwidth
    }
}