calyx_opt/analysis/
schedule_conflicts.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
use calyx_ir as ir;
use calyx_utils::{Idx, WeightGraph};
use petgraph::visit::IntoEdgeReferences;
use std::collections::{HashMap, HashSet};

#[derive(Default)]
/// A conflict graph that describes which nodes (i.e. groups/invokes) are being run in parallel
/// to each other.
pub struct ScheduleConflicts {
    graph: WeightGraph<ir::Id>,
    /// Reverse mapping from node indices to node (i.e. group/invoke) names.
    /// We can store this because we don't expect nodes or edges to be added
    /// once a conflict graph is constructed.
    rev_map: HashMap<Idx, ir::Id>,
}

/// A conflict between two nodes is specified using the name of the nodes
/// involved
type Conflict = (ir::Id, ir::Id);

impl ScheduleConflicts {
    /// Return a vector of all nodes that conflict with this nodes.
    pub fn conflicts_with(&self, node: &ir::Id) -> HashSet<ir::Id> {
        self.graph
            .graph
            .neighbors(self.graph.index_map[node])
            .map(|idx| self.rev_map[&idx])
            .collect()
    }

    /// Returns an iterator containing all conflict edges,
    /// `(src node: ir::Id, dst node: ir::Id)`, in this graph.
    pub fn all_conflicts(&self) -> impl Iterator<Item = Conflict> + '_ {
        self.graph
            .graph
            .edge_references()
            .map(move |(src, dst, _)| (self.rev_map[&src], self.rev_map[&dst]))
    }

    /////////////// Internal Methods //////////////////
    /// Adds a node to the CurrentConflict set.
    fn add_node(&mut self, node: ir::Id) {
        if !self.graph.contains_node(&node) {
            self.graph.add_node(node)
        }
    }

    fn add_edge(&mut self, g1: &ir::Id, g2: &ir::Id) {
        self.graph.add_edge(g1, g2)
    }
}

/// Given a set of vectors of nodes, adds edges between all nodes in one
/// vector to all nodes in every other vector.
///
/// For example:
/// ```
/// vec![
///     vec!["a", "b"],
///     vec!["c", "d"]
/// ]
/// ```
/// will create the edges:
/// ```
/// a --- c
/// b --- c
/// a --- d
/// b --- d
/// ```
fn all_conflicting(
    groups: &[Vec<ir::Id>],
    current_conflicts: &mut ScheduleConflicts,
) {
    for group1 in 0..groups.len() {
        for group2 in group1 + 1..groups.len() {
            for node1 in &groups[group1] {
                for node2 in &groups[group2] {
                    current_conflicts.add_edge(node1, node2);
                }
            }
        }
    }
}

fn build_conflict_graph_static(
    sc: &ir::StaticControl,
    confs: &mut ScheduleConflicts,
    all_nodes: &mut Vec<ir::Id>,
) {
    match sc {
        ir::StaticControl::Enable(ir::StaticEnable { group, .. }) => {
            confs.add_node(group.borrow().name());
            all_nodes.push(group.borrow().name());
        }
        ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
            build_conflict_graph_static(body, confs, all_nodes);
        }
        ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => stmts
            .iter()
            .for_each(|c| build_conflict_graph_static(c, confs, all_nodes)),
        ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
            let par_nodes = stmts
                .iter()
                .map(|c| {
                    // Visit this child and add conflict edges.
                    // Collect the enables in this into a new vector.
                    let mut nodes = Vec::new();
                    build_conflict_graph_static(c, confs, &mut nodes);
                    nodes
                })
                .collect::<Vec<_>>();

            // Add conflict edges between all children.
            all_conflicting(&par_nodes, confs);

            // Add the enables from visiting the children to the current
            // set of enables.
            all_nodes.append(&mut par_nodes.into_iter().flatten().collect());
        }
        ir::StaticControl::If(ir::StaticIf {
            tbranch, fbranch, ..
        }) => {
            build_conflict_graph_static(tbranch, confs, all_nodes);
            build_conflict_graph_static(fbranch, confs, all_nodes);
        }
        ir::StaticControl::Invoke(ir::StaticInvoke { comp, .. }) => {
            confs.add_node(comp.borrow().name());
            all_nodes.push(comp.borrow().name());
        }
        ir::StaticControl::Empty(_) => (),
    }
}
/// Construct a conflict graph by traversing the Control program.
fn build_conflict_graph(
    c: &ir::Control,
    confs: &mut ScheduleConflicts,
    all_nodes: &mut Vec<ir::Id>,
) {
    match c {
        ir::Control::Empty(_) => (),
        ir::Control::Invoke(ir::Invoke { comp, .. }) => {
            confs.add_node(comp.borrow().name());
            all_nodes.push(comp.borrow().name());
        }
        ir::Control::Enable(ir::Enable { group, .. }) => {
            confs.add_node(group.borrow().name());
            all_nodes.push(group.borrow().name());
        }
        ir::Control::Seq(ir::Seq { stmts, .. }) => stmts
            .iter()
            .for_each(|c| build_conflict_graph(c, confs, all_nodes)),
        ir::Control::If(ir::If {
            cond,
            tbranch,
            fbranch,
            ..
        }) => {
            // XXX (rachit): This might be incorrect since cond is a combinational
            // group
            if let Some(c) = cond {
                all_nodes.push(c.borrow().name());
                confs.add_node(c.borrow().name());
            }
            build_conflict_graph(tbranch, confs, all_nodes);
            build_conflict_graph(fbranch, confs, all_nodes);
        }
        ir::Control::While(ir::While { cond, body, .. }) => {
            // XXX (rachit): This might be incorrect since cond is a combinational
            // group
            if let Some(c) = cond {
                all_nodes.push(c.borrow().name());
                confs.add_node(c.borrow().name());
            }
            build_conflict_graph(body, confs, all_nodes);
        }
        ir::Control::Repeat(ir::Repeat { body, .. }) => {
            build_conflict_graph(body, confs, all_nodes);
        }
        ir::Control::Par(ir::Par { stmts, .. }) => {
            let par_nodes = stmts
                .iter()
                .map(|c| {
                    // Visit this child and add conflict edges.
                    // Collect the enables in this into a new vector.
                    let mut nodes = Vec::new();
                    build_conflict_graph(c, confs, &mut nodes);
                    nodes
                })
                .collect::<Vec<_>>();

            // Add conflict edges between all children.
            all_conflicting(&par_nodes, confs);

            // Add the enables from visiting the children to the current
            // set of enables.
            all_nodes.append(&mut par_nodes.into_iter().flatten().collect());
        }
        ir::Control::Static(sc) => {
            build_conflict_graph_static(sc, confs, all_nodes)
        }
    }
}

/// Construct ScheduleConflicts from a ir::Control.
impl From<&ir::Control> for ScheduleConflicts {
    fn from(control: &ir::Control) -> Self {
        let mut confs = ScheduleConflicts::default();
        build_conflict_graph(control, &mut confs, &mut vec![]);
        // Build the reverse index
        confs.rev_map = confs.graph.reverse_index();
        confs
    }
}