calyx_opt/analysis/reaching_defns.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
//! Calculate the reaching definitions in a control program.
use calyx_ir as ir;
use itertools::Itertools;
use std::cmp::Ordering;
use std::cmp::{Ord, PartialOrd};
use std::{
collections::{BTreeMap, BTreeSet, HashMap},
ops::BitOr,
};
use super::read_write_set::AssignmentAnalysis;
const INVOKE_PREFIX: &str = "__invoke_";
type GroupName = ir::Id;
type InvokeName = ir::Id;
/// A wrapper enum to distinguish between Ids that come from groups and ids that
/// were fabricated during the analysis for individual invoke statements. This
/// prevents attempting to look up the ids used for the invoke statements as
/// there will be no corresponding group.
#[derive(Clone, Debug, Hash, Eq, PartialEq)]
pub enum GroupOrInvoke {
Group(GroupName),
Invoke(InvokeName),
}
impl PartialOrd for GroupOrInvoke {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for GroupOrInvoke {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
match (self, other) {
(GroupOrInvoke::Group(a), GroupOrInvoke::Group(b))
| (GroupOrInvoke::Invoke(a), GroupOrInvoke::Invoke(b)) => {
ir::Id::cmp(a, b)
}
(GroupOrInvoke::Group(_), GroupOrInvoke::Invoke(_)) => {
Ordering::Greater
}
(GroupOrInvoke::Invoke(_), GroupOrInvoke::Group(_)) => {
Ordering::Less
}
}
}
}
#[allow(clippy::from_over_into)]
impl Into<ir::Id> for GroupOrInvoke {
fn into(self) -> ir::Id {
match self {
GroupOrInvoke::Group(id) | GroupOrInvoke::Invoke(id) => id,
}
}
}
#[derive(Debug, Default)]
pub struct MetadataMap {
map: HashMap<*const ir::Invoke, ir::Id>,
static_map: HashMap<*const ir::StaticInvoke, ir::Id>,
}
impl MetadataMap {
fn attach_label(&mut self, invoke: &ir::Invoke, label: ir::Id) {
self.map.insert(invoke as *const ir::Invoke, label);
}
fn attach_label_static(
&mut self,
invoke: &ir::StaticInvoke,
label: ir::Id,
) {
self.static_map
.insert(invoke as *const ir::StaticInvoke, label);
}
pub fn fetch_label(&self, invoke: &ir::Invoke) -> Option<&ir::Id> {
self.map.get(&(invoke as *const ir::Invoke))
}
pub fn fetch_label_static(
&self,
invoke: &ir::StaticInvoke,
) -> Option<&ir::Id> {
self.static_map.get(&(invoke as *const ir::StaticInvoke))
}
}
/// A datastructure used to represent a set of definitions/uses. These are
/// represented as pairs of (Id, GroupOrInvoke) where the Id is the identifier
/// being defined, and the second term represents the defining location (or use
/// location). In the case of a group, this location is just the group Id. In
/// the case of an invoke the "location" is a unique label assigned to each
/// invoke statement that beings with the INVOKE_PREFIX.
///
/// Defsets are constructed based on the assignments in a group and the ports in
/// an invoke. If a group writes to a register then it corresponds to a
/// definition (REGID, GROUPNAME). Similarly, this can be used to represent a
/// use of the register REGID in the very same group.
///
/// These structs are used both to determine what definitions reach a given
/// location and are also used to ensure that uses of a given definition (or
/// group of definitions are appropriately tied to any renaming that the
/// particular definition undergoes.
#[derive(Clone, Debug, Default)]
pub struct DefSet {
set: BTreeSet<(ir::Id, GroupOrInvoke)>,
}
impl DefSet {
fn extend(&mut self, writes: BTreeSet<ir::Id>, grp: GroupName) {
for var in writes {
self.set.insert((var, GroupOrInvoke::Group(grp)));
}
}
fn kill_from_writeread(
&self,
writes: &BTreeSet<ir::Id>,
reads: &BTreeSet<ir::Id>,
) -> (Self, KilledSet) {
let mut killed = KilledSet::new();
let def = DefSet {
set: self
.set
.iter()
.cloned()
.filter_map(|(name, grp)| {
if !writes.contains(&name) || reads.contains(&name) {
Some((name, grp))
} else {
killed.insert(name);
None
}
})
.collect(),
};
(def, killed)
}
fn kill_from_hashset(&self, killset: &BTreeSet<ir::Id>) -> Self {
DefSet {
set: self
.set
.iter()
.filter(|&(name, _)| !killset.contains(name))
.cloned()
.collect(),
}
}
}
impl BitOr<&DefSet> for &DefSet {
type Output = DefSet;
fn bitor(self, rhs: &DefSet) -> Self::Output {
DefSet {
set: &self.set | &rhs.set,
}
}
}
type OverlapMap = BTreeMap<ir::Id, Vec<BTreeSet<(ir::Id, GroupOrInvoke)>>>;
/// A struct used to compute a reaching definition analysis. The only field is a
/// map between [GroupOrInvoke] labels and the definitions that exit the given
/// group or the given Invoke node. This analysis is conservative and will only
/// kill a definition if the group MUST write the given register and does not
/// read it. If this is not the case old definitions will remain in the reaching
/// set as we cannot be certain that they have been killed.
///
/// Note that this analysis assumes that groups do not appear more than once
/// within the control structure and will provide inaccurate results if this
/// expectation is violated.
///
/// Like [super::LiveRangeAnalysis] par blocks are treated via a parallel CFG approach.
/// Concretely this means that after a par block executes any id that is killed
/// by one arm is killed and all defs introduced (but not killed) by any arm are
/// defined. Note that this assumes separate arms are not writing the same
/// register or reading a registe that is written by another arm.
#[derive(Debug, Default)]
pub struct ReachingDefinitionAnalysis {
pub reach: BTreeMap<GroupOrInvoke, DefSet>,
pub meta: MetadataMap,
}
impl ReachingDefinitionAnalysis {
/// Constructs a reaching definition analysis for registers over the given
/// control structure. Will include dummy "definitions" for invoke statements
/// which can be ignored if one is not rewriting values
/// **NOTE**: Assumes that each group appears at only one place in the control
/// structure.
pub fn new(control: &ir::Control) -> Self {
let initial_set = DefSet::default();
let mut analysis = ReachingDefinitionAnalysis::default();
let mut counter: u64 = 0;
build_reaching_def(
control,
initial_set,
KilledSet::new(),
&mut analysis,
&mut counter,
);
analysis
}
/// Provides a map containing a vector of sets for each register. The sets
/// within contain separate groupings of definitions for the given register.
/// If the vector contains one set, then all the definitions for the given
/// register name must have the same name.
/// **NOTE:** Includes dummy "definitions" for continuous assignments and
/// uses within groups and invoke statements. This is to ensure that all
/// uses of a given register are rewriten with the appropriate name.
pub fn calculate_overlap<'a, I, T: 'a>(
&'a self,
continuous_assignments: I,
) -> OverlapMap
where
I: Iterator<Item = &'a ir::Assignment<T>> + Clone + 'a,
{
let continuous_regs: Vec<ir::Id> = continuous_assignments
.analysis()
.cell_uses()
.filter_map(|cell| {
let cell_ref = cell.borrow();
if let Some(name) = cell_ref.type_name() {
if name == "std_reg" {
return Some(cell_ref.name());
}
}
None
})
.collect();
let mut overlap_map: BTreeMap<
ir::Id,
Vec<BTreeSet<(ir::Id, GroupOrInvoke)>>,
> = BTreeMap::new();
for (grp, defset) in &self.reach {
let mut group_overlaps: BTreeMap<
&ir::Id,
BTreeSet<(ir::Id, GroupOrInvoke)>,
> = BTreeMap::new();
for (defname, group_name) in &defset.set {
let set = group_overlaps.entry(defname).or_default();
set.insert((*defname, group_name.clone()));
set.insert((*defname, grp.clone()));
}
for name in &continuous_regs {
let set = group_overlaps.entry(name).or_default();
set.insert((
*name,
GroupOrInvoke::Group("__continuous".into()),
));
}
for (defname, set) in group_overlaps {
let overlap_vec = overlap_map.entry(*defname).or_default();
if overlap_vec.is_empty() {
overlap_vec.push(set)
} else {
let mut no_overlap = vec![];
let mut overlap = vec![];
for entry in overlap_vec.drain(..) {
if set.is_disjoint(&entry) {
no_overlap.push(entry)
} else {
overlap.push(entry)
}
}
*overlap_vec = no_overlap;
if overlap.is_empty() {
overlap_vec.push(set);
} else {
overlap_vec.push(
overlap
.into_iter()
.fold(set, |acc, entry| &acc | &entry),
)
}
}
}
}
overlap_map
}
}
type KilledSet = BTreeSet<ir::Id>;
fn remove_entries_defined_by(set: &mut KilledSet, defs: &DefSet) {
let tmp_set: BTreeSet<_> = defs.set.iter().map(|(id, _)| id).collect();
*set = std::mem::take(set)
.into_iter()
.filter(|x| !tmp_set.contains(x))
.collect();
}
/// Returns the register cells whose out port is read anywhere in the given
/// assignments
fn register_reads<T>(assigns: &[ir::Assignment<T>]) -> BTreeSet<ir::Id> {
assigns
.iter()
.analysis()
.reads()
.filter_map(|p| {
let port = p.borrow();
let ir::PortParent::Cell(cell_wref) = &port.parent else {
unreachable!("Port not part of a cell");
};
// Skip this if the port is not an output
if &port.name != "out" {
return None;
};
let cr = cell_wref.upgrade();
let cell = cr.borrow();
if cell.is_primitive(Some("std_reg")) {
Some(cr.borrow().name())
} else {
None
}
})
.unique()
.collect()
}
// handles `build_reaching_defns` for the enable/static_enables case.
// asgns are the assignments in the group (either static or dynamic)
fn handle_reaching_def_enables<T>(
asgns: &[ir::Assignment<T>],
reach: DefSet,
rd: &mut ReachingDefinitionAnalysis,
group_name: ir::Id,
) -> (DefSet, KilledSet) {
let writes = asgns.iter().analysis().must_writes().cells();
// for each write:
// Killing all other reaching defns for that var
// generating a new defn (Id, GROUP)
let write_set = writes
.filter(|x| match &x.borrow().prototype {
ir::CellType::Primitive { name, .. } => name == "std_reg",
_ => false,
})
.map(|x| x.borrow().name())
.collect::<BTreeSet<_>>();
let read_set = register_reads(asgns);
// only kill a def if the value is not read.
let (mut cur_reach, killed) =
reach.kill_from_writeread(&write_set, &read_set);
cur_reach.extend(write_set, group_name);
rd.reach
.insert(GroupOrInvoke::Group(group_name), cur_reach.clone());
(cur_reach, killed)
}
fn build_reaching_def_static(
sc: &ir::StaticControl,
reach: DefSet,
killed: KilledSet,
rd: &mut ReachingDefinitionAnalysis,
counter: &mut u64,
) -> (DefSet, KilledSet) {
match sc {
ir::StaticControl::Empty(_) => (reach, killed),
ir::StaticControl::Enable(sen) => handle_reaching_def_enables(
&sen.group.borrow().assignments,
reach,
rd,
sen.group.borrow().name(),
),
ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
let (post_cond_def, post_cond_killed) = build_reaching_def_static(
&ir::StaticControl::empty(),
reach.clone(),
killed,
rd,
counter,
);
let (round_1_def, mut round_1_killed) = build_reaching_def_static(
body,
post_cond_def,
post_cond_killed,
rd,
counter,
);
remove_entries_defined_by(&mut round_1_killed, &reach);
let (post_cond2_def, post_cond2_killed) = build_reaching_def(
&ir::Control::empty(),
&round_1_def | &reach,
round_1_killed,
rd,
counter,
);
// Run the analysis a second time to get the fixed point of the
// while loop using the defsets calculated during the first iteration
let (final_def, mut final_kill) = build_reaching_def_static(
body,
post_cond2_def.clone(),
post_cond2_killed,
rd,
counter,
);
remove_entries_defined_by(&mut final_kill, &post_cond2_def);
(&final_def | &post_cond2_def, final_kill)
}
ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => stmts
.iter()
.fold((reach, killed), |(acc, killed), inner_c| {
build_reaching_def_static(inner_c, acc, killed, rd, counter)
}),
ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
let (defs, par_killed): (Vec<DefSet>, Vec<KilledSet>) = stmts
.iter()
.map(|ctrl| {
build_reaching_def_static(
ctrl,
reach.clone(),
KilledSet::new(),
rd,
counter,
)
})
.unzip();
let global_killed = par_killed
.iter()
.fold(KilledSet::new(), |acc, set| &acc | set);
let par_exit_defs = defs
.iter()
.zip(par_killed.iter())
.map(|(defs, kills)| {
defs.kill_from_hashset(&(&global_killed - kills))
})
.fold(DefSet::default(), |acc, element| &acc | &element);
(par_exit_defs, &global_killed | &killed)
}
ir::StaticControl::If(ir::StaticIf {
tbranch, fbranch, ..
}) => {
let (post_cond_def, post_cond_killed) = build_reaching_def_static(
&ir::StaticControl::empty(),
reach,
killed,
rd,
counter,
);
let (t_case_def, t_case_killed) = build_reaching_def_static(
tbranch,
post_cond_def.clone(),
post_cond_killed.clone(),
rd,
counter,
);
let (f_case_def, f_case_killed) = build_reaching_def_static(
fbranch,
post_cond_def,
post_cond_killed,
rd,
counter,
);
(&t_case_def | &f_case_def, &t_case_killed | &f_case_killed)
}
ir::StaticControl::Invoke(invoke) => {
*counter += 1;
let iterator = invoke
.inputs
.iter()
.chain(invoke.outputs.iter())
.filter_map(|(_, port)| {
if let ir::PortParent::Cell(wc) = &port.borrow().parent {
let rc = wc.upgrade();
let parent = rc.borrow();
if parent
.type_name()
.unwrap_or_else(|| ir::Id::from(""))
== "std_reg"
{
let name = format!("{}{}", INVOKE_PREFIX, counter);
rd.meta.attach_label_static(
invoke,
ir::Id::from(name.clone()),
);
return Some((
parent.name(),
GroupOrInvoke::Invoke(ir::Id::from(name)),
));
}
}
None
});
let mut new_reach = reach;
new_reach.set.extend(iterator);
(new_reach, killed)
}
}
}
// Handles both `repeat` and `while` bodies when building reaching defs.
fn handle_repeat_while_body(
body: &ir::Control,
reach: DefSet,
killed: KilledSet,
rd: &mut ReachingDefinitionAnalysis,
counter: &mut u64,
) -> (DefSet, KilledSet) {
let (post_cond_def, post_cond_killed) = build_reaching_def(
&ir::Control::empty(),
reach.clone(),
killed,
rd,
counter,
);
let (round_1_def, mut round_1_killed) =
build_reaching_def(body, post_cond_def, post_cond_killed, rd, counter);
remove_entries_defined_by(&mut round_1_killed, &reach);
let (post_cond2_def, post_cond2_killed) = build_reaching_def(
&ir::Control::empty(),
&round_1_def | &reach,
round_1_killed,
rd,
counter,
);
// Run the analysis a second time to get the fixed point of the
// while loop using the defsets calculated during the first iteration
let (final_def, mut final_kill) = build_reaching_def(
body,
post_cond2_def.clone(),
post_cond2_killed,
rd,
counter,
);
remove_entries_defined_by(&mut final_kill, &post_cond2_def);
(&final_def | &post_cond2_def, final_kill)
}
fn build_reaching_def(
c: &ir::Control,
reach: DefSet,
killed: KilledSet,
rd: &mut ReachingDefinitionAnalysis,
counter: &mut u64,
) -> (DefSet, KilledSet) {
match c {
ir::Control::Seq(ir::Seq { stmts, .. }) => {
stmts
.iter()
.fold((reach, killed), |(acc, killed), inner_c| {
build_reaching_def(inner_c, acc, killed, rd, counter)
})
}
ir::Control::Par(ir::Par { stmts, .. }) => {
let (defs, par_killed): (Vec<DefSet>, Vec<KilledSet>) = stmts
.iter()
.map(|ctrl| {
build_reaching_def(
ctrl,
reach.clone(),
KilledSet::new(),
rd,
counter,
)
})
.unzip();
let global_killed = par_killed
.iter()
.fold(KilledSet::new(), |acc, set| &acc | set);
let par_exit_defs = defs
.iter()
.zip(par_killed.iter())
.map(|(defs, kills)| {
defs.kill_from_hashset(&(&global_killed - kills))
})
.fold(DefSet::default(), |acc, element| &acc | &element);
(par_exit_defs, &global_killed | &killed)
}
ir::Control::If(ir::If {
tbranch, fbranch, ..
}) => {
let (post_cond_def, post_cond_killed) = build_reaching_def(
&ir::Control::empty(),
reach,
killed,
rd,
counter,
);
let (t_case_def, t_case_killed) = build_reaching_def(
tbranch,
post_cond_def.clone(),
post_cond_killed.clone(),
rd,
counter,
);
let (f_case_def, f_case_killed) = build_reaching_def(
fbranch,
post_cond_def,
post_cond_killed,
rd,
counter,
);
(&t_case_def | &f_case_def, &t_case_killed | &f_case_killed)
}
ir::Control::While(ir::While { body, .. }) => {
handle_repeat_while_body(body, reach, killed, rd, counter)
}
ir::Control::Invoke(invoke) => {
*counter += 1;
let iterator = invoke
.inputs
.iter()
.chain(invoke.outputs.iter())
.filter_map(|(_, port)| {
if let ir::PortParent::Cell(wc) = &port.borrow().parent {
let rc = wc.upgrade();
let parent = rc.borrow();
if parent
.type_name()
.unwrap_or_else(|| ir::Id::from(""))
== "std_reg"
{
let name = format!("{}{}", INVOKE_PREFIX, counter);
rd.meta.attach_label(
invoke,
ir::Id::from(name.clone()),
);
return Some((
parent.name(),
GroupOrInvoke::Invoke(ir::Id::from(name)),
));
}
}
None
});
let mut new_reach = reach;
new_reach.set.extend(iterator);
(new_reach, killed)
}
ir::Control::Enable(en) => handle_reaching_def_enables(
&en.group.borrow().assignments,
reach,
rd,
en.group.borrow().name(),
),
ir::Control::Empty(_) => (reach, killed),
ir::Control::Repeat(ir::Repeat { body, .. }) => {
handle_repeat_while_body(body, reach, killed, rd, counter)
}
ir::Control::Static(sc) => {
build_reaching_def_static(sc, reach, killed, rd, counter)
}
}
}