calyx_opt/analysis/
live_range_analysis.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
use crate::analysis::{
    AssignmentAnalysis, ControlId, ReadWriteSet, ShareSet, VariableDetection,
};
use calyx_ir::{self as ir, Id, RRC};
use itertools::Itertools;
use std::{
    collections::{HashMap, HashSet},
    fmt::Debug,
    rc::Rc,
};

type TypeNameSet = HashSet<(ir::CellType, ir::Id)>;
type CellsByType = HashMap<ir::CellType, HashSet<ir::Id>>;
// maps cell type to maps that map cell name to control statement
type LiveMapByType = HashMap<ir::CellType, HashMap<ir::Id, HashSet<u64>>>;
type ReadWriteInfo = (
    HashSet<(ir::CellType, ir::Id)>,
    HashSet<(ir::CellType, ir::Id)>,
);
type InvokeInfo<'a> = (
    &'a [(ir::Id, ir::RRC<ir::Port>)],
    &'a [(ir::Id, ir::RRC<ir::Port>)],
);

/// Returns [ir::Cell] which are read from in the assignments.
/// **Ignores** reads from group holes, and reads from done signals, when it
/// is safe to do so.
/// To ignore a read from a done signal:
/// the `@go` signal for the same cell *must* be written to in the group
pub fn meaningful_read_set<'a, T: 'a>(
    assigns: impl Iterator<Item = &'a ir::Assignment<T>> + Clone + 'a,
) -> impl Iterator<Item = RRC<ir::Cell>> + 'a {
    meaningful_port_read_set(assigns)
        .map(|port| Rc::clone(&port.borrow().cell_parent()))
        .unique_by(|cell| cell.borrow().name())
}

/// Returns the "meaningful" [ir::Port] which are read from in the assignments.
/// "Meaningful" means we just exclude the following `@done` reads:
/// the `@go` signal for the same cell *must* be written to in the group
pub fn meaningful_port_read_set<'a, T: 'a>(
    assigns: impl Iterator<Item = &'a ir::Assignment<T>> + Clone + 'a,
) -> impl Iterator<Item = RRC<ir::Port>> + 'a {
    // go_writes = all cells which are guaranteed to have their go port written to in assigns
    let go_writes: Vec<RRC<ir::Cell>> = assigns
        .clone()
        .filter(|asgn| {
            // to be included in go_writes, one of the following must hold:
            // a) guard is true
            // b cell.go = !cell.done ? 1'd1
            if asgn.guard.is_true() {
                return true;
            }

            // checking cell.go = !cell.done! 1'd1
            asgn.dst.borrow().attributes.has(ir::NumAttr::Go)
                && asgn.guard.is_not_done(
                    &asgn.dst.borrow().cell_parent().borrow().name(),
                )
                && asgn.src.borrow().is_constant(1, 1)
        })
        .analysis()
        .writes()
        .filter(|port| port.borrow().attributes.has(ir::NumAttr::Go))
        .map(|port| Rc::clone(&port.borrow().cell_parent()))
        .collect();

    // if we have a done port that overlaps with go_writes, then can remove the
    // done port. Otherwise, we should keep it.
    assigns
        .flat_map(ReadWriteSet::port_reads)
        .filter(move |port| {
            if port.borrow().attributes.has(ir::NumAttr::Done) {
                let done_parent = Rc::clone(&port.borrow().cell_parent());
                go_writes
                    .iter()
                    .all(|go_parent| !Rc::ptr_eq(go_parent, &done_parent))
            } else {
                true
            }
        })
}

/// The data structure used to represent sets of ids. This is used to represent
/// the `live`, `gen`, and `kill` sets.
#[derive(Default, Clone)]
pub struct Prop {
    map: CellsByType,
}

/// Implement nice printing for prop for debugging purposes.
impl Debug for Prop {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{{")?;
        let names = self.map.iter().flat_map(|(_, ids)| ids).join(", ");
        write!(f, "{}", names)?;
        write!(f, "}}")
    }
}

impl Prop {
    /// Defines the dataflow transfer function.
    /// We use the standard definition for liveness:
    /// `(alive - kill) + gen`
    fn transfer(&mut self, r#gen: Prop, kill: Prop) {
        self.sub(kill);
        self.or(r#gen);
    }

    fn insert(&mut self, (cell_type, cell_name): (ir::CellType, ir::Id)) {
        self.map.entry(cell_type).or_default().insert(cell_name);
    }

    /// Defines the data_flow transfer function. `(alive - kill) + gen`.
    /// However, this is for when gen and kill are sets, and self is a map.
    fn transfer_set(&mut self, r#gen: TypeNameSet, kill: TypeNameSet) {
        self.sub_set(kill);
        self.or_set(r#gen);
    }

    // The or operation, but when the self is a map and rhs is a set of tuples.
    fn or_set(&mut self, rhs: TypeNameSet) {
        for (cell_type, cell_name) in rhs {
            self.map.entry(cell_type).or_default().insert(cell_name);
        }
    }

    // The sub operation, but when the self is a map and rhs is a set of tuples.
    fn sub_set(&mut self, rhs: TypeNameSet) {
        for (cell_type, cell_name) in rhs {
            self.map.entry(cell_type).or_default().remove(&cell_name);
        }
    }

    // edits self to equal self | rhs. Faster than self | rhs  but must take rhs
    // ownership and not &rhs.
    fn or(&mut self, rhs: Prop) {
        for (cell_type, cell_names) in rhs.map {
            self.map.entry(cell_type).or_default().extend(cell_names);
        }
    }

    // edits self to equal self intersect rhs. Must take ownership of rhs
    // ownership and not &rhs.
    fn intersect(&mut self, mut rhs: Prop) {
        for (cell_type, cell_names) in self.map.iter_mut() {
            let empty_hash = HashSet::new();
            let entry: HashSet<Id> =
                rhs.map.remove(cell_type).unwrap_or(empty_hash);
            cell_names.retain(|cell| entry.contains(cell));
        }
    }

    // edits self to equal self - rhs. Faster than self - rhs  but must take rhs
    // ownership and not &rhs.
    fn sub(&mut self, rhs: Prop) {
        for (cell_type, cell_names) in rhs.map {
            self.map
                .entry(cell_type)
                .or_default()
                .retain(|cell| !cell_names.contains(cell));
        }
    }
}

/// This analysis implements a parallel version of a classic liveness analysis.
/// For each group or invoke, it returns a list of the state shareable cells
/// that are "alive" during an execution of a group or invoke statement (we
/// identify an invoke statement by the cell that is being invoked, and groups
/// by the name of the group).
///
/// ## Parallel Analog to a CFG
/// The `par` statement introduces a new kind of control branching that can
/// not be captured by a traditional CFG.
///
/// Consider whether `x` is alive at `foo` in the following program.
/// ```
/// seq {
///   wr_x; // writes register x
///   foo;
///   par {
///     wr_x2; // writes register x
///     bar;
///   }
///   rd_x; // reads register x
/// }
/// ```
/// `x` is not alive at `foo` because there are no reads to `x` before
/// `wr_x2` is executed which writes to `x` again. Note that `wr_x2` is always
/// executed.
///
/// We might try and represent the `par` branching with a normal CFG like this:
/// ```
///       +------+
///       | wr_x |
///       +--+---+
///          |
///          v
///       +--+--+
///    +--+ foo +--+
///    |  +-----+  |
///    |           |
///    v           v
/// +--+----+   +--+--+
/// | wr_x2 |   | bar |
/// +--+----+   +--+--+
///    |           |
///    +------+----+
///           |
///           v
///       +------+
///       | rd_x |
///       +------+
/// ```
/// But then this program is identical to
/// ```
/// seq {
///   wr_x; // writes register x
///   foo;
///   if blah.out with B {
///     wr_x2; // writes register x
///   } else {
///     bar;
///   }
///   rd_x; // reads register x
/// }
/// ```
/// which has different semantics. In particular `x` is still alive at `foo` because
/// `wr_x2` may not be executed.
///
/// We need to augment the traditional CFG to account for `par`.
///
/// ## A Parallel CFG
/// The representation should:
///  1) Have the same properties as a normal CFG when no parallelism is present.
///  2) Threads of a `par` block should not have to know that they are in a `par` (i.e. are just CFGs themselves)
///  3) External to the `par` block, the information of running all threads in `par` should be visible.
///
/// To address these concerns, we use a parallel CFG (pCFG) based on
/// [Analyzing programs with explicit parallelism](https://link.springer.com/chapter/10.1007%2FBFb0038679).
/// We introduce a new kind of node in the CFG called a `par node`. A `par node` represents an entire
/// `par` block. The above program with `par` would look like:
/// ```
/// +------+
/// | wr_x |
/// +--+---+
///    |
///    v
/// +--+--+
/// | foo |
/// +--+--+
///    |
///    v
/// +--+---+
/// | par1 |
/// +--+---+
///    |
///    v
/// +--+---+
/// | rd_x |
/// +------+
/// ```
/// For each `par node`, we associate a list of pCFGs where each pCFG represents a thread.
/// Each thread starts with a `begin par` node and ends with a `end par` node.
///
/// These are the graphs associated with `par1`.
/// ```
/// First thread:    Second thread:
/// +----------+      +----------+
/// |begin par1|      |begin par1|
/// +--+-------+      +-+--------+
///    |                |
///    v                v
/// +--+--+           +-+-+
/// |wr_x2|           |bar|
/// +--+--+           +-+-+
///    |                |
///    v                v
/// +--+-----+        +-+------+
/// |end par1|        |end par1|
/// +--------+        +--------+
/// ```
///
/// The idea with the `begin/end parx` nodes is that these will handle the flow
/// of information in and out of the threads. For example, you could write these equations:
/// ```
/// out(begin par1) = in(par1)
/// out(par1) = join over all in(end par1)
/// ```
///
/// ## Definition of Liveness
/// Now we finally come to the definition of "liveness" and how we use the pCFG to compute this.
///
/// We say a cell `x` is "live" at a node `p` in the CFG if there is a write to `x` ordered before
/// `p` (such that there are no more writes to `x` at a point between that and `p`) and if there is a read
/// of `x` ordered after `p` (such that there are no writes between that and `p`).
///
/// We define the following equations (assuming a reversed direction dataflow analysis):
/// ```
/// for some node n:
///   gen(n) = registers that may be read in n
///   kill(n) = register that must be written to in n
///   live_in(n) = union over live_out(pred(n))
///   live_out(n) = (live_in(n) - kill(n)) + gen(n)
/// for some par node p:
///   gen(p) = union over gen(n) for sub-nodes n in p
///   kill(p) = union over kill(n) for sub-nodes n in p
///   live_in(p) = union over live_out(pred(p))
///   live_out(p) = (live_in(p) - kill(p)) + gen(p)
/// ```
/// The main place this analysis differs from traditional liveness analysis
/// is the definition of `gen(p)` and `kill(p)` for `par` nodes. These are the
/// union of the `gen`s and `kill`s of all of their sub-nodes. Intuitively we
/// are treating `par` blocks as if they were just a single group. Note that this
/// is overly conservative because we are potentially ignoring ordering
/// information of the threads.
#[derive(Default)]
pub struct LiveRangeAnalysis {
    /// Map from node ids (i.e., group enables or invokes) names
    /// to the components live inside them.
    live: HashMap<u64, Prop>,
    /// Groups that have been identified as variable-like.
    /// Mapping from group name to Some(type, name) where type is the cell type and
    /// name is the cell name. If group is not variable like, maps to None.
    variable_like: HashMap<ir::Id, Option<(ir::CellType, ir::Id)>>,
    /// Set of state shareable components (as type names)
    state_share: ShareSet,
    /// Set of shareable components (as type names)
    share: ShareSet,
    /// maps invokes/enable ids to the shareable cell types/names used in them
    invokes_enables_map: HashMap<u64, TypeNameSet>,
    /// maps comb groups of if/while statements to the cell types/
    /// names used in them
    cgroup_uses_map: HashMap<u64, TypeNameSet>,
}

impl Debug for LiveRangeAnalysis {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        writeln!(f, "Live variables {{")?;
        for (k, v) in self.live.iter() {
            writeln!(f, "  {}: {:?}", k, v)?;
        }
        write!(f, "}}")
    }
}

impl LiveRangeAnalysis {
    /// Construct a live range analysis.
    pub fn new(
        control: &mut ir::Control,
        state_share: ShareSet,
        share: ShareSet,
        only_run_once: bool,
    ) -> Self {
        let mut ranges = LiveRangeAnalysis {
            state_share,
            share,
            ..Default::default()
        };

        // Give each control statement a unique "NODE_ID" attribute.
        ControlId::compute_unique_ids(control, 0, false);

        let (alive, gens, kills) = ranges.build_live_ranges(
            control,
            Prop::default(),
            Prop::default(),
            Prop::default(),
        );
        // If the component could run more than once, than we have to feed the
        // output alive,gens,kills, back into the control and run the algorithm
        // again.
        if !only_run_once {
            ranges.build_live_ranges(control, alive, gens, kills);
        }

        for (node, cells_by_type) in &ranges.invokes_enables_map {
            if let Some(prop) = ranges.live.get_mut(node) {
                prop.or_set(cells_by_type.clone());
            }
        }

        ranges
    }

    // updates live_cell_map and live_once_map
    // maps all cells live at node `id` to node `id` in `live_cells_map`,
    // and maps all cells live at node `id` to `parents` in `live_once_map`.
    fn update_live_control_data(
        &self,
        id: u64,
        live_once_map: &mut LiveMapByType,
        live_cell_map: &mut LiveMapByType,
        parents: &HashSet<u64>,
    ) {
        let live_set = self.live.get(&id).unwrap().map.clone();
        for (cell_type, live_cells) in live_set {
            let cell_to_node =
                live_cell_map.entry(cell_type.clone()).or_default();
            let cell_to_control = live_once_map.entry(cell_type).or_default();
            for cell in live_cells {
                cell_to_node.entry(cell).or_default().insert(id);
                cell_to_control.entry(cell).or_default().extend(parents);
            }
        }
    }

    fn add_cell_to_control_data(
        id: u64,
        (cell_type, cell_name): &(ir::CellType, ir::Id),
        live_once_map: &mut LiveMapByType,
        live_cell_map: &mut LiveMapByType,
        parents: &HashSet<u64>,
    ) {
        // add cell as live within whichever direct children of
        // par blocks they're located within
        if !parents.is_empty() {
            live_once_map
                .entry(cell_type.clone())
                .or_default()
                .entry(*cell_name)
                .or_default()
                .extend(parents);
        }
        // mark cell as live in the control id
        // If id corresponds to an if/while guard,
        // what is really means, is that the cell is live
        // at the comb group/port guard of the if/while statement
        live_cell_map
            .entry(cell_type.clone())
            .or_default()
            .entry(*cell_name)
            .or_default()
            .insert(id);
    }

    fn get_live_control_data_static(
        &self,
        live_once_map: &mut LiveMapByType,
        par_thread_map: &mut HashMap<u64, u64>,
        live_cell_map: &mut LiveMapByType,
        parents: &HashSet<u64>,
        sc: &ir::StaticControl,
    ) {
        match sc {
            ir::StaticControl::Empty(_) => (),
            ir::StaticControl::Enable(_) | ir::StaticControl::Invoke(_) => {
                let id = ControlId::get_guaranteed_id_static(sc);
                self.update_live_control_data(
                    id,
                    live_once_map,
                    live_cell_map,
                    parents,
                )
            }
            ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
                self.get_live_control_data_static(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    body,
                );
            }
            ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => {
                for stmt in stmts {
                    self.get_live_control_data_static(
                        live_once_map,
                        par_thread_map,
                        live_cell_map,
                        parents,
                        stmt,
                    );
                }
            }
            ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
                let parent_id = ControlId::get_guaranteed_id_static(sc);
                let mut new_parents = parents.clone();
                for stmt in stmts {
                    // building par_thread_map
                    let child_id = ControlId::get_guaranteed_id_static(stmt);
                    par_thread_map.insert(child_id, parent_id);

                    // building live_once_map by adding child_id to parents when
                    // we recursively call get_live_control_data on each child
                    new_parents.insert(child_id);
                    self.get_live_control_data_static(
                        live_once_map,
                        par_thread_map,
                        live_cell_map,
                        &new_parents,
                        stmt,
                    );
                    new_parents.remove(&child_id);
                }
            }
            ir::StaticControl::If(ir::StaticIf {
                port,
                tbranch,
                fbranch,
                ..
            }) => {
                self.get_live_control_data_static(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    tbranch,
                );
                self.get_live_control_data_static(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    fbranch,
                );
                let id = ControlId::get_guaranteed_id_static(sc);
                // Examining the cell read from in the if guard
                if let Some(cell_info) = LiveRangeAnalysis::port_to_cell_name(
                    port,
                    &self.state_share,
                ) {
                    Self::add_cell_to_control_data(
                        id,
                        &cell_info,
                        live_once_map,
                        live_cell_map,
                        parents,
                    )
                }
            }
        }
    }

    /// Updates live_once_map and par_thread_map.
    /// live_once_map should map celltypes to a map, which should map cells of
    /// celltype to control statements in which it is live for at least one group
    /// or invoke in the control. We only map to control statements that are
    /// direct children of par blocks.
    /// par_thread_map maps direct children of par blocks to their parents
    /// live_cell_map maps cells to the nodes in which it is live
    /// par_thread_map maps direct children of par blocks to their parents
    /// parents is the list of current control statements (that are direct children
    /// of par blocks) that are parents (at any level of nesting) of c.
    pub fn get_live_control_data(
        &self,
        live_once_map: &mut LiveMapByType,
        par_thread_map: &mut HashMap<u64, u64>,
        live_cell_map: &mut LiveMapByType,
        parents: &HashSet<u64>,
        c: &ir::Control,
    ) {
        match c {
            ir::Control::Empty(_) => (),
            ir::Control::Par(ir::Par { stmts, .. }) => {
                let parent_id = ControlId::get_guaranteed_id(c);
                let mut new_parents = parents.clone();
                for stmt in stmts {
                    // building par_thread_map
                    let child_id = ControlId::get_guaranteed_id(stmt);
                    par_thread_map.insert(child_id, parent_id);

                    // building live_once_map by adding child_id to parents when
                    // we recursively call get_live_control_data on each child
                    new_parents.insert(child_id);
                    self.get_live_control_data(
                        live_once_map,
                        par_thread_map,
                        live_cell_map,
                        &new_parents,
                        stmt,
                    );
                    new_parents.remove(&child_id);
                }
            }
            ir::Control::Seq(ir::Seq { stmts, .. }) => {
                for stmt in stmts {
                    self.get_live_control_data(
                        live_once_map,
                        par_thread_map,
                        live_cell_map,
                        parents,
                        stmt,
                    );
                }
            }
            ir::Control::If(ir::If {
                tbranch, fbranch, ..
            }) => {
                self.get_live_control_data(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    tbranch,
                );
                self.get_live_control_data(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    fbranch,
                );
                let id = ControlId::get_guaranteed_id(c);
                // Examining all the cells used at the comb group of the if stmt
                if let Some(comb_group_uses) = self.cgroup_uses_map.get(&id) {
                    for cell_info in comb_group_uses {
                        Self::add_cell_to_control_data(
                            id,
                            cell_info,
                            live_once_map,
                            live_cell_map,
                            parents,
                        )
                    }
                }
            }
            ir::Control::While(ir::While { body, .. }) => {
                self.get_live_control_data(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    body,
                );
                let id = ControlId::get_guaranteed_id(c);
                if let Some(comb_group_uses) = self.cgroup_uses_map.get(&id) {
                    for (cell_type, cell_name) in comb_group_uses {
                        if !parents.is_empty() {
                            live_once_map
                                .entry(cell_type.clone())
                                .or_default()
                                .entry(*cell_name)
                                .or_default()
                                .extend(parents);
                        }
                        live_cell_map
                            .entry(cell_type.clone())
                            .or_default()
                            .entry(*cell_name)
                            .or_default()
                            .insert(id);
                    }
                }
            }
            ir::Control::Repeat(ir::Repeat { body, .. }) => {
                self.get_live_control_data(
                    live_once_map,
                    par_thread_map,
                    live_cell_map,
                    parents,
                    body,
                );
            }
            ir::Control::Enable(_) | ir::Control::Invoke(_) => {
                let id = ControlId::get_guaranteed_id(c);
                self.update_live_control_data(
                    id,
                    live_once_map,
                    live_cell_map,
                    parents,
                )
            }
            ir::Control::Static(sc) => self.get_live_control_data_static(
                live_once_map,
                par_thread_map,
                live_cell_map,
                parents,
                sc,
            ),
        }
    }

    /// Look up the set of things live at a node (i.e. group or invoke) definition.
    pub fn get(&self, node: &u64) -> &CellsByType {
        &self
            .live
            .get(node)
            .unwrap_or_else(|| panic!("Live set missing for {}", node))
            .map
    }

    /// Get a unique list of all live cells in `component`.
    pub fn get_all(&self) -> impl Iterator<Item = ir::Id> + '_ {
        self.live
            .iter()
            .flat_map(|(_, set)| {
                set.map.iter().fold(HashSet::new(), |mut acc, (_, set)| {
                    acc.extend(set);
                    acc
                })
            })
            .unique()
            .cloned()
    }

    fn variable_like(
        &mut self,
        grp: &RRC<ir::Group>,
    ) -> &Option<(ir::CellType, ir::Id)> {
        let group = grp.borrow();
        let name = &group.name();
        if !self.variable_like.contains_key(name) {
            let res = VariableDetection::variable_like(grp, &self.state_share);
            self.variable_like.insert(grp.borrow().name(), res);
        }
        &self.variable_like[name]
    }

    /// Compute the `gen` and `kill` sets for a given group definition. Because
    /// we can't always know if a group will *definitely* kill something or *definitely*
    /// read something, this function is conservative.
    ///
    /// However, it is conservative in different directions for `gens` and `kills`.
    /// In particular, it is always ok to accidentally put something in `gens` because
    /// in the worst case we say something is alive when it isn't.
    ///
    /// However, it is **never** ok to accidentally put something in `writes` because
    /// we might accidentally kill something that should be alive.
    ///
    /// To implement this, we say that something is being read if it shows up on the rhs
    /// of any assignment in a group. Something is written if it it's guard is `1` or if it has no guard.
    fn find_gen_kill_group(
        &mut self,
        group_ref: &RRC<ir::Group>,
    ) -> (TypeNameSet, TypeNameSet) {
        let group = group_ref.borrow();
        let maybe_var = self.variable_like(group_ref).clone();
        let sc_clone = &self.state_share;
        // if the group contains what looks like a variable write,
        // then just add variable to write set
        if let Some((cell_type, variable)) = maybe_var {
            // we don't want to read the control signal of `variable`
            let assignments = group
                .assignments
                .iter()
                .filter(|asgn| {
                    !(asgn.src.borrow().get_parent_name() == variable
                        && asgn.src.borrow().name == "done")
                })
                .filter(|asgn| {
                    if let ir::Guard::Port(port) = &*asgn.guard {
                        !(port.borrow().get_parent_name() == variable
                            && port.borrow().name == "done")
                    } else {
                        true
                    }
                });

            // calculate reads, but ignore `variable`. we've already dealt with that
            let reads: HashSet<_> = assignments
                .analysis()
                .cell_reads()
                .filter(|c| sc_clone.is_shareable_component(c))
                .map(|c| (c.borrow().prototype.clone(), c.borrow().name()))
                .collect();

            let mut writes = HashSet::new();
            writes.insert((cell_type, variable));

            (reads, writes)
        } else {
            let reads: HashSet<_> =
                meaningful_read_set(group.assignments.iter())
                    .filter(|c| sc_clone.is_shareable_component(c))
                    .map(|c| (c.borrow().prototype.clone(), c.borrow().name()))
                    .collect();

            // only consider write assignments where the guard is true
            let assignments = group
                .assignments
                .iter()
                .filter(|asgn| *asgn.guard == ir::Guard::True)
                .cloned()
                .collect::<Vec<_>>();

            let writes: HashSet<_> = assignments
                .iter()
                .analysis()
                .cell_writes()
                .filter(|c| sc_clone.is_shareable_component(c))
                .map(|c| (c.borrow().prototype.clone(), c.borrow().name()))
                .collect();

            (reads, writes)
        }
    }

    // TODO(calebmkim) TODO(paili0628): This is similar to find_static_group right now
    // We could eventually try to merge it, but we should do it after we have
    // hammered down the details of the rest of the static IR assignments
    fn find_gen_kill_static_group(
        &mut self,
        group_ref: &RRC<ir::StaticGroup>,
    ) -> (TypeNameSet, TypeNameSet) {
        let group = group_ref.borrow();
        // we don't have to worry about variable like for static groups
        let sc_clone = &self.state_share;
        let reads: HashSet<_> = meaningful_read_set(group.assignments.iter())
            .filter(|c| sc_clone.is_shareable_component(c))
            .map(|c| (c.borrow().prototype.clone(), c.borrow().name()))
            .collect();
        // only consider write assignments where the guard is true
        let assignments = group
            .assignments
            .iter()
            .filter(|asgn| *asgn.guard == ir::Guard::True)
            .cloned()
            .collect::<Vec<_>>();

        let writes: HashSet<_> = assignments
            .iter()
            .analysis()
            .cell_writes()
            .filter(|c| sc_clone.is_shareable_component(c))
            .map(|c| (c.borrow().prototype.clone(), c.borrow().name()))
            .collect();

        (reads, writes)
    }

    fn find_uses_assigns<T>(
        assigns: &[ir::Assignment<T>],
        shareable_components: &ShareSet,
    ) -> TypeNameSet {
        assigns
            .iter()
            .analysis()
            .cell_uses()
            .filter(|cell| shareable_components.is_shareable_component(cell))
            .map(|cell| (cell.borrow().prototype.clone(), cell.borrow().name()))
            .collect::<HashSet<_>>()
    }

    // returns (share_uses, state_reads), which are the uses of shareable components
    // and reads of state shareable components
    fn uses_reads_cgroup(
        group_ref: &RRC<ir::CombGroup>,
        shareable: &ShareSet,
        state_shareable: &ShareSet,
    ) -> (TypeNameSet, TypeNameSet) {
        let group = group_ref.borrow();
        let share_uses = group
            .assignments
            .iter()
            .analysis()
            .cell_uses()
            .filter(|cell| shareable.is_shareable_component(cell))
            .map(|cell| (cell.borrow().prototype.clone(), cell.borrow().name()))
            .collect::<HashSet<_>>();
        let state_reads = group
            .assignments
            .iter()
            .analysis()
            .reads()
            .cells()
            .filter(|cell| state_shareable.is_shareable_component(cell))
            .map(|cell| (cell.borrow().prototype.clone(), cell.borrow().name()))
            .collect::<HashSet<_>>();
        (share_uses, state_reads)
    }

    fn port_to_cell_name(
        port: &RRC<ir::Port>,
        shareable_components: &ShareSet,
    ) -> Option<(ir::CellType, ir::Id)> {
        if let ir::PortParent::Cell(cell_wref) = &port.borrow().parent {
            let cell = cell_wref.upgrade();
            if shareable_components.is_shareable_component(&cell) {
                return Some((
                    cell.borrow().prototype.clone(),
                    cell.borrow().name(),
                ));
            }
        }
        None
    }

    // gets the gens/kills (aka reads/writes) of the invoke given inputs, outputs, and comb group.
    fn gen_kill_invoke(
        inputs: &[(ir::Id, ir::RRC<ir::Port>)],
        outputs: &[(ir::Id, ir::RRC<ir::Port>)],
        comb_group_info: &Option<ir::RRC<ir::CombGroup>>,
        comp: &ir::RRC<ir::Cell>,
        shareable_components: &ShareSet,
    ) -> (TypeNameSet, TypeNameSet) {
        // The writes of the invoke include its outputs. Also, we count the cell
        // being invoked as being written to.
        let mut write_set: TypeNameSet = outputs
            .iter()
            .filter_map(|(_, src)| {
                Self::port_to_cell_name(src, shareable_components)
            })
            .collect();

        if shareable_components.is_shareable_component(comp) {
            write_set.insert((
                comp.borrow().prototype.clone(),
                comp.borrow().name(),
            ));
        }

        // The reads of the invoke include its inputs.
        // One quick note: since the component is written to, there is no need to include this
        // component as being read from since we know the write to the component
        // precedes the read from it, due to the nature of `invoke` statements.
        // This is "cheating" in a sense, since the component is technically being
        // read from. However, since we know that there is a write to the component
        // that that precedes the read from it within the very same invoke statement,
        // it "appears" to all the other control statements in the program that the
        // component is not being read from in the invoke statement.
        let mut read_set: TypeNameSet = inputs
            .iter()
            .filter_map(|(_, src)| {
                Self::port_to_cell_name(src, shareable_components)
            })
            .collect();

        if let Some(comb_group) = comb_group_info {
            read_set.extend(
                comb_group
                    .borrow()
                    .assignments
                    .iter()
                    .analysis()
                    .reads()
                    .cells()
                    .filter(|cell| {
                        shareable_components.is_shareable_component(cell)
                    })
                    .map(|cell| {
                        (cell.borrow().prototype.clone(), cell.borrow().name())
                    }),
            );
        }

        (read_set, write_set)
    }

    // gets the uses of the invoke given inputs, outputs, and comb group.
    // Should include any cell that is either read from or written to at all
    // in the invoke statement (including the comb group)
    fn uses_invoke(
        inputs: &[(ir::Id, ir::RRC<ir::Port>)],
        outputs: &[(ir::Id, ir::RRC<ir::Port>)],
        comb_group_info: &Option<ir::RRC<ir::CombGroup>>,
        shareable_components: &ShareSet,
    ) -> TypeNameSet {
        // uses of shareable components in the invoke statement
        let mut uses: TypeNameSet = inputs
            .iter()
            .chain(outputs.iter())
            .filter_map(|(_, src)| {
                Self::port_to_cell_name(src, shareable_components)
            })
            .collect();
        // uses of shareable components in the comb group (if it exists)
        if let Some(comb_group) = &comb_group_info {
            uses.extend(
                comb_group
                    .borrow()
                    .assignments
                    .iter()
                    .analysis()
                    .cell_uses()
                    .filter(|cell| {
                        shareable_components.is_shareable_component(cell)
                    })
                    .map(|cell| {
                        (cell.borrow().prototype.clone(), cell.borrow().name())
                    }),
            );
        };
        uses
    }

    // updates liveness for an invoke: build to handle either static or dynamic invokes
    // invoke_info = (inputs, outputs) of invoke
    // comp = comp being invokes
    // comb_group_invo = Option<comb group if invoke has one>
    // liveness_info = (alive, gens, kills) coming into the invoke
    // returns the (alive, gens, kills) based on the invoke info
    // also updates self.invokes_enables_map using the input information
    fn update_invoke_liveness(
        &mut self,
        invoke_info: InvokeInfo,
        comb_group_info: &Option<ir::RRC<ir::CombGroup>>,
        comp: &ir::RRC<ir::Cell>,
        id: u64,
        liveness_info: (Prop, Prop, Prop),
    ) -> (Prop, Prop, Prop) {
        let (inputs, outputs) = invoke_info;
        let (mut alive, mut gens, mut kills) = liveness_info;

        // get uses of all shareable components, and then update self.invokes_enables_map
        let uses_shareable =
            Self::uses_invoke(inputs, outputs, comb_group_info, &self.share);

        self.invokes_enables_map
            .entry(id)
            .or_default()
            .extend(uses_shareable);

        // get the reads and writes of the invoke, and use that to determine livenes propogation
        let (reads, writes) = LiveRangeAnalysis::gen_kill_invoke(
            inputs,
            outputs,
            comb_group_info,
            comp,
            &self.state_share,
        );

        alive.transfer_set(reads.clone(), writes.clone());
        let alive_out = alive.clone();

        // set the live set of this node to be the things live on the
        // output of this node plus the things written to in this invoke
        // plus all shareable components used
        self.live.insert(id, {
            alive.or_set(writes.clone());
            alive
        });
        (
            alive_out,
            {
                gens.sub_set(writes.clone());
                gens.or_set(reads);
                gens
            },
            {
                kills.or_set(writes);
                kills
            },
        )
    }

    // Updates Live Range Analysis
    // id should correspond to the id of an enable, and assigns should correspond
    // to the assignments in that enable
    // reads and writes should be the reads/writes of the assigns
    // alive, gens, kills are the alive, gens, and kills coming into the enable
    // returns the alive, gens, and kills leaving the enable
    // It also updates self.live at id to be the cells live at live
    // It also updates self.invokes_enables_map
    fn update_group_liveness<T>(
        &mut self,
        assigns: &[ir::Assignment<T>],
        id: u64,
        read_write_info: ReadWriteInfo,
        mut alive: Prop,
        mut gens: Prop,
        mut kills: Prop,
    ) -> (Prop, Prop, Prop) {
        let uses_share =
            LiveRangeAnalysis::find_uses_assigns(assigns, &self.share);
        self.invokes_enables_map
            .entry(id)
            .or_default()
            .extend(uses_share);
        let (reads, writes) = read_write_info;
        // compute transfer function
        alive.transfer_set(reads.clone(), writes.clone());
        let alive_out = alive.clone();

        // set the live set of this node to be the things live on the
        // output of this node plus the things written to in this group
        self.live.insert(id, {
            alive.or_set(writes.clone());
            alive
        });
        (
            alive_out,
            {
                gens.sub_set(writes.clone());
                gens.or_set(reads);
                gens
            },
            {
                kills.or_set(writes);
                kills
            },
        )
    }

    fn build_live_ranges_static(
        &mut self,
        sc: &ir::StaticControl,
        alive: Prop,
        gens: Prop,
        kills: Prop,
    ) -> (Prop, Prop, Prop) {
        match sc {
            ir::StaticControl::Empty(_) => (alive, gens, kills),
            ir::StaticControl::Enable(ir::StaticEnable { group, .. }) => {
                // XXX(sam) no reason to compute this every time
                let (reads, writes) = self.find_gen_kill_static_group(group);
                self.update_group_liveness(
                    &group.borrow().assignments,
                    ControlId::get_guaranteed_id_static(sc),
                    (reads, writes),
                    alive,
                    gens,
                    kills,
                )
            }
            ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
                let (a, g, k) =
                    self.build_live_ranges_static(body, alive, gens, kills);
                // Have to go through the repeat body twice in order to get a
                // correct live range analysis
                self.build_live_ranges_static(body, a, g, k)
            }
            ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => stmts
                .iter()
                .rev()
                .fold((alive, gens, kills), |(alive, gens, kills), e| {
                    self.build_live_ranges_static(e, alive, gens, kills)
                }),
            ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
                let (mut alive, gens, kills) = stmts
                    .iter()
                    .rev()
                    .map(|e| {
                        self.build_live_ranges_static(
                            e,
                            alive.clone(),
                            Prop::default(),
                            Prop::default(),
                        )
                    })
                    .fold(
                        (Prop::default(), Prop::default(), Prop::default()),
                        |(mut acc_alive, mut acc_gen, mut acc_kill),
                         (alive, r#gen, kill)| {
                            (
                                // Doing in place operations saves time
                                {
                                    acc_alive.or(alive);
                                    acc_alive
                                },
                                {
                                    acc_gen.or(r#gen);
                                    acc_gen
                                },
                                {
                                    acc_kill.or(kill);
                                    acc_kill
                                },
                            )
                        },
                    );
                // should only count as a "gen" if it is alive on at least one
                // of the outputs of the child node
                alive.transfer(gens.clone(), kills.clone());
                (alive, gens, kills)
            }
            ir::StaticControl::If(ir::StaticIf {
                tbranch,
                fbranch,
                port,
                ..
            }) => {
                // compute each branch
                let (mut t_alive, mut t_gens, mut t_kills) = self
                    .build_live_ranges_static(
                        tbranch,
                        alive.clone(),
                        gens.clone(),
                        kills.clone(),
                    );
                let (f_alive, f_gens, f_kills) =
                    self.build_live_ranges_static(fbranch, alive, gens, kills);

                // take union
                t_alive.or(f_alive);
                t_gens.or(f_gens);
                // kills must take intersection to be conservative
                t_kills.intersect(f_kills);

                // add if guard cell to the alive/gens sets
                if let Some(cell_info) = LiveRangeAnalysis::port_to_cell_name(
                    port,
                    &self.state_share,
                ) {
                    t_alive.insert(cell_info.clone());
                    t_gens.insert(cell_info);
                }

                (t_alive, t_gens, t_kills)
            }
            ir::StaticControl::Invoke(ir::StaticInvoke {
                inputs,
                outputs,
                comp,
                ..
            }) => {
                //get the shareable components used in the invoke stmt
                self.update_invoke_liveness(
                    (inputs, outputs),
                    &None,
                    comp,
                    ControlId::get_guaranteed_id_static(sc),
                    (alive, gens, kills),
                )
            }
        }
    }

    /// Implements the parallel dataflow analysis that computes the liveness of every state shareable component
    /// at every point in the program.
    fn build_live_ranges(
        &mut self,
        c: &ir::Control,
        alive: Prop,
        gens: Prop,
        kills: Prop,
    ) -> (Prop, Prop, Prop) {
        match c {
            ir::Control::Empty(_) => (alive, gens, kills),
            ir::Control::Invoke(ir::Invoke {
                inputs,
                outputs,
                comb_group,
                comp,
                ..
            }) => self.update_invoke_liveness(
                (inputs, outputs),
                comb_group,
                comp,
                ControlId::get_guaranteed_id(c),
                (alive, gens, kills),
            ),
            ir::Control::Enable(ir::Enable { group, .. }) => {
                // XXX(sam) no reason to compute this every time
                let (reads, writes) = self.find_gen_kill_group(group);

                self.update_group_liveness(
                    &group.borrow().assignments,
                    ControlId::get_guaranteed_id(c),
                    (reads, writes),
                    alive,
                    gens,
                    kills,
                )
            }
            ir::Control::Seq(ir::Seq { stmts, .. }) => stmts.iter().rev().fold(
                (alive, gens, kills),
                |(alive, gens, kills), e| {
                    self.build_live_ranges(e, alive, gens, kills)
                },
            ),
            ir::Control::If(ir::If {
                tbranch,
                fbranch,
                port,
                cond,
                ..
            }) => {
                // compute each branch
                let (mut t_alive, mut t_gens, mut t_kills) = self
                    .build_live_ranges(
                        tbranch,
                        alive.clone(),
                        gens.clone(),
                        kills.clone(),
                    );
                let (f_alive, f_gens, f_kills) =
                    self.build_live_ranges(fbranch, alive, gens, kills);

                // take union
                t_alive.or(f_alive);
                t_gens.or(f_gens);
                // kills must be intersection to be conservative
                t_kills.intersect(f_kills);

                let id = ControlId::get_guaranteed_id(c);

                // reads from state shareable components in the comb group
                // These should get "passed on" as live/gens as we go up the
                // control flow of the program
                let mut cgroup_reads: TypeNameSet = HashSet::new();
                // Any uses of any shareable components in the comb group.
                let mut shareable_uses: TypeNameSet = HashSet::new();

                if let Some(comb_group) = cond {
                    let (share_uses, state_reads) = Self::uses_reads_cgroup(
                        comb_group,
                        &self.share,
                        &self.state_share,
                    );
                    shareable_uses = share_uses;
                    cgroup_reads = state_reads;
                }

                if let Some(cell_info) = LiveRangeAnalysis::port_to_cell_name(
                    port,
                    &self.state_share,
                ) {
                    // If we read from a state shareable component (like a register)
                    // in the port, then we add it to cgroup_reads.
                    cgroup_reads.insert(cell_info);
                }
                if !cgroup_reads.is_empty() || !shareable_uses.is_empty() {
                    let mut all_uses = cgroup_reads.clone();
                    all_uses.extend(shareable_uses);
                    // add all uses of both shareable and state-shareable components
                    // in the cgroup_uses_map.
                    self.cgroup_uses_map.insert(id, all_uses);
                }
                // adding cgroup_reads as live on output of if stmt
                t_alive.or_set(cgroup_reads.clone());
                t_gens.or_set(cgroup_reads);
                (t_alive, t_gens, t_kills)
            }
            ir::Control::Par(ir::Par { stmts, .. }) => {
                let (mut alive, gens, kills) = stmts
                    .iter()
                    .rev()
                    .map(|e| {
                        self.build_live_ranges(
                            e,
                            alive.clone(),
                            Prop::default(),
                            Prop::default(),
                        )
                    })
                    .fold(
                        (Prop::default(), Prop::default(), Prop::default()),
                        |(mut acc_alive, mut acc_gen, mut acc_kill),
                         (alive, r#gen, kill)| {
                            (
                                // Doing in place operations saves time
                                {
                                    acc_alive.or(alive);
                                    acc_alive
                                },
                                {
                                    acc_gen.or(r#gen);
                                    acc_gen
                                },
                                {
                                    acc_kill.or(kill);
                                    acc_kill
                                },
                            )
                        },
                    );
                // should only count as a "gen" if it is alive on at least one
                // of the outputs of the child node
                alive.transfer(gens.clone(), kills.clone());
                (alive, gens, kills)
            }
            ir::Control::While(ir::While {
                body, port, cond, ..
            }) => {
                let id = ControlId::get_guaranteed_id(c);
                // need this info twice, so just pre-calculate whether port is
                // a state shareable component.
                let port_if_shareable: Option<(ir::CellType, ir::Id)> =
                    LiveRangeAnalysis::port_to_cell_name(
                        port,
                        &self.state_share,
                    );
                // all reads from state shareable components in the comb group or port
                let mut cgroup_reads: TypeNameSet = HashSet::new();
                // all uses of shareable components in the comb group or port
                let mut shareable_uses: TypeNameSet = HashSet::new();

                let input_kills = kills.clone();
                // Go through while body and while port + comb group once
                let (mut alive, mut gens, kills) =
                    self.build_live_ranges(body, alive, gens, kills);
                if let Some(cell_info) = port_if_shareable {
                    // adds port to cgroup_reads if state_shareable.
                    cgroup_reads.insert(cell_info);
                }
                if let Some(comb_group) = cond {
                    let (share_uses, state_reads) = Self::uses_reads_cgroup(
                        comb_group,
                        &self.share,
                        &self.state_share,
                    );
                    shareable_uses = share_uses;
                    cgroup_reads.extend(state_reads);
                }
                // setting alive and gens appropriately based on the updated info
                // from the comb group + port.
                alive.or_set(cgroup_reads.clone());
                gens.or_set(cgroup_reads.clone());

                if !cgroup_reads.is_empty() || !shareable_uses.is_empty() {
                    // add all uses of shareable and non-shareable components into
                    // cgroup_uses_map
                    let mut all_uses = cgroup_reads.clone();
                    all_uses.extend(shareable_uses);
                    self.cgroup_uses_map.insert(id, all_uses);
                }

                // Going through the while body and guard + port once again
                let (mut alive, mut gens, kills) =
                    self.build_live_ranges(body, alive, gens, kills);
                alive.or_set(cgroup_reads.clone());
                gens.or_set(cgroup_reads);

                // we can only inlcude the kills if we know the while loop executes
                // at least once
                if let Some(val) = c.get_attribute(ir::NumAttr::Bound) {
                    if val > 0 {
                        return (alive, gens, kills);
                    }
                }

                (alive, gens, input_kills)
            }
            ir::Control::Repeat(ir::Repeat { body, .. }) => {
                let (a, g, k) =
                    self.build_live_ranges(body, alive, gens, kills);
                // need to feed the live nodes on the output of the body
                // back into the body to get correct live range analysis
                self.build_live_ranges(body, a, g, k)
            }
            ir::Control::Static(sc) => {
                self.build_live_ranges_static(sc, alive, gens, kills)
            }
        }
    }
}