calyx_opt/analysis/
graph_coloring.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use calyx_utils::{Idx, WeightGraph};
use itertools::Itertools;
use petgraph::algo;
use std::{
    collections::{BTreeMap, HashMap},
    fmt::Display,
    hash::Hash,
};

/// Defines a greedy graph coloring algorithm over a generic conflict graph.
pub struct GraphColoring<T> {
    graph: WeightGraph<T>,
    // color_freq_map records similar information as `all_colors` does in the
    // `color_greedy()` method, but `color_freq_map` stays alive after the
    // function call, and doesn't get rid of colors once they reach the bound
    color_freq_map: HashMap<Idx, i64>,
}

impl<T, C> From<C> for GraphColoring<T>
where
    T: Hash + Eq + Ord,
    C: Iterator<Item = T>,
{
    fn from(nodes: C) -> Self {
        let graph = WeightGraph::from(nodes);
        GraphColoring {
            graph,
            color_freq_map: HashMap::new(),
        }
    }
}

impl<'a, T> GraphColoring<T>
where
    T: 'a + Eq + Hash + Clone + Ord,
{
    /// Add a conflict edge between `a` and `b`.
    #[inline(always)]
    pub fn insert_conflict(&mut self, a: &T, b: &T) {
        self.graph.add_edge(a, b);
    }

    /// Add conflict edges between all given items.
    pub fn insert_conflicts<C>(&mut self, items: C)
    where
        C: Iterator<Item = &'a T> + Clone,
    {
        self.graph.add_all_edges(items)
    }

    pub fn has_nodes(&self) -> bool {
        self.graph.graph.node_count() > 0
    }

    /// increases the frequency of `idx` in `color_freq_map` by one
    fn increase_freq(&mut self, idx: Idx) {
        self.color_freq_map
            .entry(idx)
            .and_modify(|v| *v += 1)
            .or_insert(1);
    }

    /// provides a hashmap that gives the sharing frequencies
    pub fn get_share_freqs(&mut self) -> HashMap<i64, i64> {
        let mut pdf: HashMap<i64, i64> = HashMap::new();
        // hold total value so we know how much to divide by at the end
        for value in self.color_freq_map.values() {
            // in`pdf`, each key represents a possible number of times a cell
            // is shared-- for example, x-- and the corresponding key represents
            // how many cells in the new program were shared x times
            pdf.entry(*value).and_modify(|v| *v += 1).or_insert(1);
        }
        pdf
    }

    /// Given an `ordering` of `T`s, find a mapping from nodes to `T`s such
    /// that no node has a neighbor with the same `T`.
    /// `keep_self_color` indicates whether to keep the mapping of the node to
    /// itself in the returned HashMap (since nodes are "colors")
    pub fn color_greedy(
        &mut self,
        bound: Option<i64>,
        keep_self_color: bool,
    ) -> HashMap<T, T> {
        let mut all_colors: BTreeMap<Idx, i64> = BTreeMap::new();
        let mut coloring: HashMap<Idx, Idx> = HashMap::new();
        let always_share = bound.is_none();
        // if we always_share is true, then we don't care about bound
        let bound_if_exists = if always_share { 0 } else { bound.unwrap() };

        // get strongly get components of graph
        let sccs = algo::tarjan_scc(&self.graph.graph);
        // sort strongly components from largest to smallest
        for scc in sccs.into_iter().sorted_by(|a, b| b.len().cmp(&a.len())) {
            // check if graph component is complete
            let is_complete = scc.iter().all(|&idx| {
                self.graph.graph.neighbors(idx).count() == scc.len() - 1
            });
            // if graph is complete, then every node needs a new color. so there's no reason to
            // check neighbors
            if is_complete {
                let mut available_colors: Vec<_> =
                    all_colors.keys().cloned().collect_vec();

                // every node will need a different color
                for nidx in scc.into_iter().sorted() {
                    if !available_colors.is_empty() {
                        let c = available_colors.remove(0);
                        coloring.insert(nidx, c);
                        self.increase_freq(c);
                        if let Some(num_used) = all_colors.get_mut(&c) {
                            *num_used += 1;
                            if !always_share && *num_used == bound_if_exists {
                                all_colors.remove(&c);
                            }
                        }
                    } else {
                        all_colors.insert(nidx, 1);
                        coloring.insert(nidx, nidx);
                        self.increase_freq(nidx);
                        if !always_share && bound_if_exists == 1 {
                            all_colors.remove(&nidx);
                        }
                    }
                }
            } else {
                for nidx in scc.into_iter().sorted() {
                    let mut available_colors = all_colors.clone();
                    // search neighbors for used colors
                    for item in self.graph.graph.neighbors(nidx) {
                        // if the neighbor is already colored
                        if coloring.contains_key(&item) {
                            // remove it from the available colors
                            available_colors.remove(&coloring[&item]);
                        }
                    }

                    let color = available_colors.iter().next();
                    match color {
                        Some((c, _)) => {
                            coloring.insert(nidx, *c);
                            self.increase_freq(*c);
                            if let Some(num_used) = all_colors.get_mut(c) {
                                *num_used += 1;
                                if !always_share && *num_used == bound_if_exists
                                {
                                    all_colors.remove(c);
                                }
                            }
                        }
                        None => {
                            // use self as color if nothing else
                            all_colors.insert(nidx, 1);
                            coloring.insert(nidx, nidx);
                            self.increase_freq(nidx);
                            if !always_share && bound_if_exists == 1 {
                                all_colors.remove(&nidx);
                            }
                        }
                    };
                }
            }
        }

        let rev_map = self.graph.reverse_index();
        coloring
            .into_iter()
            .map(|(n1, n2)| (rev_map[&n1].clone(), rev_map[&n2].clone()))
            .filter(|(a, b)| (a != b) || keep_self_color)
            .collect()
    }

    // Reverses a coloring by mapping color C -> vec of nodes colored C.
    pub fn reverse_coloring(coloring: &HashMap<T, T>) -> HashMap<T, Vec<T>> {
        let mut rev_coloring: HashMap<T, Vec<T>> = HashMap::new();
        for (node, color) in coloring {
            rev_coloring
                .entry(color.clone())
                .or_default()
                .push(node.clone());
        }
        rev_coloring
    }
    pub fn welsh_powell_coloring(&self) -> HashMap<T, T> {
        let mut coloring: HashMap<T, T> = HashMap::new();

        let mut degree_ordering: Vec<&T> = self
            .graph
            .nodes()
            .sorted()
            .sorted_by(|a, b| self.graph.degree(b).cmp(&self.graph.degree(a)))
            .collect();

        let rev_map = self.graph.reverse_index();
        while !degree_ordering.is_empty() {
            let head = degree_ordering.remove(0);
            // eprintln!("{}", self.graph.degree(head));
            if !coloring.contains_key(head) {
                coloring.insert(head.clone(), head.clone());
                for &node in &degree_ordering {
                    if coloring.contains_key(node) {
                        continue;
                    }
                    if !self
                        .graph
                        .graph
                        .neighbors(self.graph.index_map[node])
                        .any(|x| coloring.get(&rev_map[&x]) == Some(head))
                    {
                        coloring.insert(node.clone(), head.clone());
                    }
                }
            }
        }

        coloring
    }
}

impl<T: Eq + Hash + ToString + Clone + Ord> Display for GraphColoring<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.graph.to_string().fmt(f)
    }
}