calyx_opt/analysis/
graph.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
use calyx_ir::{self as ir, Id, PortIterator, RRC};
use petgraph::{
    Direction::{Incoming, Outgoing},
    algo,
    graph::{DiGraph, NodeIndex},
    visit::EdgeRef,
};
use std::fmt::{Display, Write};
use std::{collections::HashMap, rc::Rc};

type Node = RRC<ir::Port>;
type Edge = ();

/// A petgraph::DiGraph where ports are the nodes and edges contain no
/// information.
pub type CellGraph = DiGraph<Node, Edge>;

/// Constructs a graph based representation of a component. Each node represents
/// a [`ir::Port`](calyx_ir::Port) and each directed edge (`X -> Y`) means
/// that `X`'s value written to `Y`.
///
/// # Example
///  ```
///  c.in = G[done] & b.done ? add.out
///  ```
/// creates the edges:
///  ```
///  add.out -> c.in
///  G[done] -> c.in
///  b.done -> c.in
///  ```
///
/// This representation is useful for asking graph based queries
/// such as all the reads from a port or all the write to a port.
#[derive(Clone, Default, Debug)]
pub struct GraphAnalysis {
    nodes: HashMap<ir::Canonical, NodeIndex>,
    graph: CellGraph,
}

impl From<&ir::Group> for GraphAnalysis {
    fn from(group: &ir::Group) -> Self {
        let mut analysis = GraphAnalysis::default();

        for asgn in &group.assignments {
            analysis.insert_assignment(asgn);
        }

        analysis
    }
}

impl From<&ir::Component> for GraphAnalysis {
    fn from(component: &ir::Component) -> Self {
        let mut analysis = GraphAnalysis::default();
        component.iter_assignments(|asgn| {
            analysis.insert_assignment(asgn);
        });
        component.iter_static_assignments(|asgn| {
            analysis.insert_assignment(asgn);
        });
        analysis
    }
}

impl GraphAnalysis {
    fn insert_assignment<T>(&mut self, asgn: &ir::Assignment<T>) {
        let GraphAnalysis { nodes, graph } = self;
        // insert nodes for src and dst ports
        let src_key = asgn.src.borrow().canonical();
        let dst_key = asgn.dst.borrow().canonical();
        let src_node = *nodes
            .entry(src_key)
            .or_insert_with(|| graph.add_node(Rc::clone(&asgn.src)));
        let dst_node = *nodes
            .entry(dst_key)
            .or_insert_with(|| graph.add_node(Rc::clone(&asgn.dst)));
        graph.add_edge(src_node, dst_node, ());
        // add edges for guards that read from the port in the guard
        // and write to the dst of the assignment
        for port in &asgn.guard.all_ports() {
            let guard_key = port.borrow().canonical();
            let idx = *nodes
                .entry(guard_key)
                .or_insert_with(|| graph.add_node(Rc::clone(port)));
            graph.add_edge(idx, dst_node, ());
        }
    }

    /// Returns an iterator over all the reads from a port.
    /// Returns an empty iterator if this is an Input port.
    pub fn reads_from(&self, port: &ir::Port) -> PortIterator<'_> {
        if let Some(&idx) = self.nodes.get(&port.canonical()) {
            match port.direction {
                ir::Direction::Input => PortIterator::empty(),
                ir::Direction::Output | ir::Direction::Inout => {
                    PortIterator::new(Box::new(
                        self.graph.edges_directed(idx, Outgoing).map(
                            move |edge| {
                                let node_idx = self
                                    .graph
                                    .edge_endpoints(edge.id())
                                    .unwrap()
                                    .1;
                                Rc::clone(&self.graph[node_idx])
                            },
                        ),
                    ))
                }
            }
        } else {
            PortIterator::empty()
        }
    }

    /// Returns an iterator over all the writes to this port.
    /// Returns an empty iterator if this is an Output port.
    pub fn writes_to(&self, port: &ir::Port) -> PortIterator<'_> {
        if let Some(&idx) = self.nodes.get(&port.canonical()) {
            match port.direction {
                ir::Direction::Input | ir::Direction::Inout => {
                    return PortIterator::new(Box::new(
                        self.graph.edges_directed(idx, Incoming).map(
                            move |edge| {
                                let node_idx = self
                                    .graph
                                    .edge_endpoints(edge.id())
                                    .unwrap()
                                    .0;
                                Rc::clone(&self.graph[node_idx])
                            },
                        ),
                    ));
                }
                ir::Direction::Output => (),
            }
        }
        PortIterator::empty()
    }

    /// Add each edge in `edges` to the graph.
    pub fn add_edges(self, edges: &[(RRC<ir::Port>, RRC<ir::Port>)]) -> Self {
        let Self { graph, nodes } = self;
        let mut graph = graph;
        for (a_ref, b_ref) in edges {
            let a = a_ref.borrow();
            let b = b_ref.borrow();
            if let (Some(a_idx), Some(b_idx)) =
                (nodes.get(&a.canonical()), nodes.get(&b.canonical()))
            {
                graph.add_edge(*a_idx, *b_idx, ());
            }
        }

        Self { nodes, graph }
    }

    /// Return a topological sort of this graph.
    pub fn toposort(&self) -> PortIterator<'_> {
        PortIterator::new(Box::new(
            algo::toposort(&self.graph, None)
                .unwrap()
                .into_iter()
                .map(move |node_idx| Rc::clone(&self.graph[node_idx])),
        ))
    }

    /// Return a Vec of paths from `start` to `finish`, each path a Vec of ports.
    pub fn paths(
        &self,
        start: &ir::Port,
        finish: &ir::Port,
    ) -> Vec<Vec<RRC<ir::Port>>> {
        let start_idx = self.nodes.get(&start.canonical()).unwrap();
        let finish_idx = self.nodes.get(&finish.canonical()).unwrap();

        let paths: Vec<Vec<RRC<ir::Port>>> = algo::all_simple_paths(
            &self.graph,
            *start_idx,
            *finish_idx,
            0,
            None,
        )
        .map(|v: Vec<_>| {
            v.into_iter()
                .map(|i| Rc::clone(&self.graph[NodeIndex::new(i.index())]))
                .collect()
        })
        .collect();
        paths
    }

    /// Restricts the analysis graph to only include edges
    /// that are specified by the `filter`.
    ///
    /// `filter` is passed references to the `src` and `dst` of each
    /// edge. When `filter(src, dst)` is `true`, then the edge between
    /// `src` and `dst` is kept. Otherwise, it is removed.
    pub fn edge_induced_subgraph<F>(self, mut filter: F) -> Self
    where
        F: FnMut(&ir::Port, &ir::Port) -> bool,
    {
        let Self { graph, nodes } = self;
        let graph = graph.filter_map(
            |_, node| Some(Rc::clone(node)),
            |idx, _| {
                let (src_idx, dst_idx) = graph.edge_endpoints(idx).unwrap();
                if filter(&graph[src_idx].borrow(), &graph[dst_idx].borrow()) {
                    Some(())
                } else {
                    None
                }
            },
        );
        Self { nodes, graph }
    }

    /// Returns all the [`Port`](calyx_ir::Port) associated with this instance.
    pub fn ports(&self) -> Vec<RRC<ir::Port>> {
        self.graph
            .raw_nodes()
            .iter()
            .map(|node| Rc::clone(&node.weight))
            .collect()
    }

    /// Remove all vertices that have no undirected neighbors from the analysis graph.
    pub fn remove_isolated_vertices(self) -> Self {
        // Create a node -> neighbor count mapping, that's insensitive to `NodeIndex`s.
        // `retain_nodes`, called a few lines down, invalidates `NodeIndex`s.
        let mut num_neighbors: HashMap<(Id, Id), usize> = HashMap::new();

        let Self { graph, nodes } = self;
        for n_idx in graph.node_indices() {
            let node = graph[n_idx].borrow();
            num_neighbors.insert(
                (node.get_parent_name(), node.name),
                graph.neighbors_undirected(n_idx).count(),
            );
        }
        let mut graph_copy = graph.clone();
        let mut nodes_copy = nodes;

        graph_copy.retain_nodes(|_g, n_idx| {
            let node = graph[n_idx].borrow();
            *num_neighbors
                .get(&(node.get_parent_name(), node.name))
                .unwrap()
                > 0
        });

        // retain_nodes breaks existing `NodeIndex`s, so repopulate nodes.
        for node in graph_copy.raw_nodes() {
            let port = node.weight.borrow();
            let n_idx = graph_copy
                .node_indices()
                .find(|idx| *graph_copy[*idx].borrow() == *port)
                .unwrap();
            nodes_copy.insert(port.canonical(), n_idx);
        }

        Self {
            graph: graph_copy,
            nodes: nodes_copy,
        }
    }

    /// Checks if there are cycles in the analysis graph.
    pub fn has_cycles(&self) -> bool {
        algo::is_cyclic_directed(&self.graph)
    }
}

impl Display for GraphAnalysis {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut out = String::new();
        for idx in self.graph.node_indices() {
            let src_port = self.graph[idx].borrow();
            let src =
                format!("{}.{}", src_port.get_parent_name(), src_port.name);
            writeln!(
                &mut out,
                "{} -> [{}]",
                src,
                self.graph
                    .neighbors_directed(idx, petgraph::Direction::Outgoing)
                    .map(|idx| {
                        let port = self.graph[idx].borrow();
                        format!("{}.{}", port.get_parent_name(), port.name)
                    })
                    .collect::<Vec<String>>()
                    .join(", ")
            )
            .expect("Failed to write to ScheduleConflicts string");
        }
        out.fmt(f)
    }
}