calyx_opt/analysis/domination_analysis/
static_par_domination.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
use crate::analysis::ControlId;
use calyx_ir as ir;
use std::{
    collections::{HashMap, HashSet},
    fmt::Debug,
};
const BEGIN_ID: ir::Attribute =
    ir::Attribute::Internal(ir::InternalAttr::BEGIN_ID);
#[derive(Default)]
/// Computes Dominators Across Static Pars.
/// Assumes each control stmt has already been given the appropraite IDs.
pub struct StaticParDomination {
    /// (nodes for static control can only be enables or if stmts... we don't suppport invokes yet)
    /// maps par ids -> (map of node ids -> (first interval for which node is live, relative to parent par))
    pub node_timing_map: HashMap<u64, HashMap<u64, (u64, u64)>>,
    /// maps par ids -> (map of node ids -> (first interval for which node is live, relative to parent par)), but these enables *may* execute
    pub node_maybe_timing_map: HashMap<u64, HashMap<u64, (u64, u64)>>,
    /// name of component
    component_name: ir::Id,
}

impl Debug for StaticParDomination {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        writeln!(
            f,
            "This maps ids of par blocks to \"node timing maps\", which map node ids to the first interval (i,j) that the node (i.e., enable/invoke/if conditional) is active for, \n relative to the start of the given par block"
        )?;
        write!(
            f,
            "============ Map for Component \"{}\"",
            self.component_name
        )?;
        writeln!(f, " ============")?;
        let node_must_map = self.node_timing_map.clone();
        let node_may_map = self.node_maybe_timing_map.clone();
        // get all par ids and iterate thru them. Sort for deterministic ordering
        let must_par_ids: HashSet<&u64> = node_must_map.keys().collect();
        let may_par_ids: HashSet<&u64> = node_may_map.keys().collect();
        let mut par_ids: Vec<_> = must_par_ids.union(&may_par_ids).collect();
        par_ids.sort();
        for par_id in par_ids.into_iter() {
            write!(f, "========")?;
            write!(f, "Par Node ID: {:?}", par_id)?;
            writeln!(f, "========")?;
            write!(f, "====")?;
            write!(f, "MUST EXECUTE")?;
            writeln!(f, "====")?;
            // print the "must executes" for the given par id
            match node_must_map.get(par_id) {
                None => (),
                Some(map) => {
                    let mut vec1: Vec<_> = map.iter().collect();
                    // sort vec1 to get deterministic ordering
                    vec1.sort_by(|(k1, _), (k2, _)| k1.cmp(k2));
                    for (enable_id, interval) in vec1 {
                        // print enable id -- (interval)
                        write!(f, "{:?} -- ", enable_id)?;
                        writeln!(f, "{:?}", interval)?;
                    }
                }
            }
            write!(f, "====")?;
            write!(f, "MAY EXECUTE")?;
            writeln!(f, "====")?;
            // print the "may executes" for the given par id
            match node_may_map.get(par_id) {
                None => (),
                Some(map) => {
                    let mut vec1: Vec<_> = map.iter().collect();
                    // sort vec1 to get deterministic ordering
                    vec1.sort_by(|(k1, _), (k2, _)| k1.cmp(k2));
                    for (enable_id, interval) in vec1 {
                        // print enable id -- (interval)
                        write!(f, "{:?} -- ", enable_id)?;
                        writeln!(f, "{:?}", interval)?;
                    }
                }
            }
        }
        writeln!(f)
    }
}

impl StaticParDomination {
    /// Construct a live range analysis.
    pub fn new(control: &mut ir::Control, comp_name: ir::Id) -> Self {
        let mut timing_map = StaticParDomination {
            component_name: comp_name,
            ..Default::default()
        };

        timing_map.build_time_map(control);

        timing_map
    }

    /// returns a HashMap that maps node ids -> set of nodes that dominate it
    /// It will only return the node ids that are dominated within the same
    /// static par block, not all the dominators for the entire control program
    pub fn get_static_dominators(&mut self) -> HashMap<u64, HashSet<u64>> {
        let mut static_dom_map: HashMap<u64, HashSet<u64>> = HashMap::new();

        for (par_id, node_interval_mapping) in &self.node_timing_map {
            let empty_map = HashMap::new();
            // these are the nodes that *may* execute for the given par id
            let may_execute_enables =
                match self.node_maybe_timing_map.get(par_id) {
                    Some(mapping) => mapping,
                    None => &empty_map,
                };
            // Very simple/naive algorithm
            // for each "must" execute nodes, it can either dominate:
            // one of the "may" execute nodes, or dominate another "must" execute node
            // "may" execute nodes cannot dominate anybody
            for (node_id1, (_, end1)) in node_interval_mapping {
                // check if node_id1 dominates any of the "may" execute nodes
                for (may_enable, (may_beg, _)) in may_execute_enables {
                    if end1 <= may_beg {
                        static_dom_map
                            .entry(*may_enable)
                            .or_default()
                            .insert(*node_id1);
                    }
                }
                // check if node_id1 dominates any of the other "must" execute nodes
                for (enable_id2, (beg2, _)) in node_interval_mapping {
                    if end1 <= beg2 {
                        static_dom_map
                            .entry(*enable_id2)
                            .or_default()
                            .insert(*node_id1);
                    }
                }
            }
        }
        static_dom_map
    }

    // updates self.node_timing_map if guaranteed_execution is true, otherwise
    // updates self.node_maybe_timing_map.
    // Also returns the "state = (par_id, cur_clock)" after the invoke/enable has occured
    // assumes that there is a cur_state = (par_id, cur_clock)
    // also, id is the id of the node, and latency is the latency of the node
    fn update_node(
        &mut self,
        id: u64,
        latency: u64,
        cur_state: (u64, u64),
        guaranteed_execute: bool,
    ) -> (u64, u64) {
        let (par_id, cur_clock) = cur_state;
        // if we are guaranteed execution, then can update self.node_timing_map
        // otherwise we must updateself.node_maybe_timing_map
        let enable_mappings = if guaranteed_execute {
            self.node_timing_map.entry(par_id).or_default()
        } else {
            self.node_maybe_timing_map.entry(par_id).or_default()
        };
        // we already have recorded an earlier execution of the node, so we don't care about a later execution
        if enable_mappings.get(&id).is_none() {
            enable_mappings.insert(id, (cur_clock, cur_clock + latency));
        }
        (par_id, cur_clock + latency)
    }

    // Recursively updates self.enable_timing_map
    // This is a helper function for fn `build_time_map`.
    // Read comment for that function to see what this function is doing
    // returns the resulting "state"
    fn build_time_map_static(
        &mut self,
        sc: &ir::StaticControl,
        // cur_state = Some(parent_par_id, cur_clock) if we're inside a static par, None otherwise.
        // parent_par_id = Node ID of the static par that we're analyzing
        // cur_clock = current clock cycles we're at relative to the start of parent_par
        cur_state: Option<(u64, u64)>,
        // whether sc is guaranteed to execute (i.e., not in an `if` statement branch)
        guaranteed_execution: bool,
    ) -> Option<(u64, u64)> {
        match sc {
            ir::StaticControl::Empty(_) => cur_state,
            ir::StaticControl::Enable(ir::StaticEnable { group, .. }) => {
                if let Some(cur_state_unwrapped) = cur_state {
                    let enable_id = ControlId::get_guaranteed_id_static(sc);
                    let latency = group.borrow().get_latency();
                    Some(self.update_node(
                        enable_id,
                        latency,
                        cur_state_unwrapped,
                        guaranteed_execution,
                    ))
                } else {
                    cur_state
                }
            }
            ir::StaticControl::Invoke(inv) => {
                if let Some(cur_state_unwrapped) = cur_state {
                    let invoke_id = ControlId::get_guaranteed_id_static(sc);
                    let latency = inv.latency;
                    Some(self.update_node(
                        invoke_id,
                        latency,
                        cur_state_unwrapped,
                        guaranteed_execution,
                    ))
                } else {
                    cur_state
                }
            }
            ir::StaticControl::If(ir::StaticIf {
                tbranch, fbranch, ..
            }) => {
                // should look thru if branches to see if they have static pars
                // inside of them, but static if branches don't help us with
                // dominators across pars (since we're not sure if they execute),
                // so we can't add any enables within the if branches
                self.build_time_map_static(tbranch, cur_state, false);
                self.build_time_map_static(fbranch, cur_state, false);
                let if_id =
                    ControlId::get_guaranteed_attribute_static(sc, BEGIN_ID);
                if let Some(cur_state_unwrapped) = cur_state {
                    self.update_node(
                        if_id,
                        1,
                        cur_state_unwrapped,
                        guaranteed_execution,
                    );
                }

                cur_state.map(|(parent_par, cur_clock)| {
                    (parent_par, cur_clock + sc.get_latency())
                })
            }
            ir::StaticControl::Repeat(ir::StaticRepeat { body, .. }) => {
                // we only need to look thru the body once either way, since we only
                // care about the *first* execution of a node
                self.build_time_map_static(
                    body,
                    cur_state,
                    guaranteed_execution,
                );
                cur_state.map(|(par_id, cur_clock_cycle)| {
                    (par_id, cur_clock_cycle + sc.get_latency())
                })
            }
            ir::StaticControl::Seq(ir::StaticSeq { stmts, .. }) => {
                // this works whether or not cur_state is None or Some
                let mut new_state = cur_state;
                for stmt in stmts {
                    new_state = self.build_time_map_static(
                        stmt,
                        new_state,
                        guaranteed_execution,
                    );
                }
                new_state
            }
            ir::StaticControl::Par(ir::StaticPar { stmts, .. }) => {
                // We know that all children must be static
                // Analyze the Current Par
                for stmt in stmts {
                    self.build_time_map_static(
                        stmt,
                        Some((ControlId::get_guaranteed_id_static(sc), 0)),
                        true,
                    );
                }
                // If we have nested pars, want to get the clock cycles relative
                // to the start of both the current par and the nested par.
                // So we have the following code to possibly get the clock cycles
                // relative to the parent par.
                match cur_state {
                    Some((cur_parent_par, cur_clock)) => {
                        for stmt in stmts {
                            self.build_time_map_static(
                                stmt,
                                cur_state,
                                guaranteed_execution,
                            );
                        }
                        Some((cur_parent_par, cur_clock + sc.get_latency()))
                    }
                    None => None,
                }
            }
        }
    }

    // Recursively updates self.node_timing_map and self.node_maybe_timing_map
    // Takes in Control block `c`
    // they both map maps par ids -> (maps of node ids -> (first interval for which the node is live))
    fn build_time_map(&mut self, c: &ir::Control) {
        match c {
            ir::Control::Invoke(_)
            | ir::Control::Empty(_)
            | ir::Control::Enable(_) => (),
            ir::Control::Par(ir::Par { stmts, .. })
            | ir::Control::Seq(ir::Seq { stmts, .. }) => {
                for stmt in stmts {
                    self.build_time_map(stmt)
                }
            }
            ir::Control::If(ir::If {
                tbranch, fbranch, ..
            }) => {
                self.build_time_map(tbranch);
                self.build_time_map(fbranch);
            }
            ir::Control::While(ir::While { body, .. })
            | ir::Control::Repeat(ir::Repeat { body, .. }) => {
                self.build_time_map(body);
            }
            ir::Control::Static(sc) => {
                self.build_time_map_static(sc, None, true);
            }
        }
    }
}